Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(5): e0177222, 2017.
Article in English | MEDLINE | ID: mdl-28472148

ABSTRACT

BACKGROUND: Inactivating mutations of the hypothalamic transcription factor singleminded1 (SIM1) have been shown as a cause of early-onset severe obesity. However, to date, the contribution of SIM1 mutations to the obesity phenotype has only been studied in a few populations. In this study, we screened the functional regions of SIM1 in severely obese children of Slovak and Moravian descent to determine if genetic variants within SIM1 may influence the development of obesity in these populations. METHODS: The SIM1 promoter region, exons and exon-intron boundaries were sequenced in 126 unrelated obese children and adolescents (2-18 years of age) and 41 adult lean controls of Slovak and Moravian origin. Inclusion criteria for the children and adolescents were a body mass index standard deviation score higher than 2 SD for an appropriate age and sex, and obesity onset at less than 5 years of age. The clinical phenotypes of the SIM1 variant carriers were compared with clinical phenotypes of 4 MC4R variant carriers and with 27 unrelated SIM1 and MC4R mutation negative obese controls that were matched for age and gender. RESULTS: Seven previously described SIM1 variants and one novel heterozygous variant p.D134N were identified. The novel variant was predicted to be pathogenic by 7 in silico software analyses and is located at a highly conserved position of the SIM1 protein. The p.D134N variant was found in an 18 year old female proband (BMI 44.2kg/m2; +7.5 SD), and in 3 obese family members. Regardless of early onset severe obesity, the proband and her brother (age 16 years) did not fulfill the criteria of metabolic syndrome. Moreover, the variant carriers had significantly lower preferences for high sugar (p = 0.02) and low fat, low carbohydrate, high protein (p = 0.02) foods compared to the obese controls. CONCLUSIONS: We have identified a novel SIM1 variant, p.D134N, in 4 obese individuals from a single pedigree which is also associated with lower preference for certain foods.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Obesity/genetics , Repressor Proteins/genetics , Adolescent , Age of Onset , Calorimetry, Indirect , Case-Control Studies , Child , Child, Preschool , Czech Republic/ethnology , Female , Food Preferences , Genetic Carrier Screening , Humans , Male , Mutation , Obesity/ethnology , Pedigree , Phenotype , Receptor, Melanocortin, Type 4/genetics , Severity of Illness Index , Slovakia/ethnology
2.
Wien Klin Wochenschr ; 128(23-24): 916-921, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27542166

ABSTRACT

Familial hypercholesterolemia (FH) is an autosomal dominant genetic disorder characterized by strikingly elevated low-density lipoprotein (LDL) cholesterol levels and premature atherosclerosis. For individuals with a definite or probable diagnosis of FH, molecular genetic testing is recommended. This can be justified in countries where genetic testing is broadly available and covered. On the other hand, in countries with limited access to genetic testing, it can be argued whether it is necessary and cost-effective to perform genetic testing in patients with a proven clinical diagnosis of FH. This article presents a family with FH where different family members manifested different phenotypes and discusses situations where genetic diagnosis can crucially help physicians in clinical decision-making on how to approach and treat patients.


Subject(s)
Apolipoproteins B/genetics , Genetic Testing/methods , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/genetics , Proprotein Convertase 9/genetics , Receptors, LDL/genetics , Adult , Female , Genetic Markers/genetics , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...