Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-22949192

ABSTRACT

Crotamine, a highly basic myotoxic polypeptide (molecular mass 4881 Da) isolated from the venom of the Brazilian rattlesnake Crotalus durissus terrificus, causes skeletal muscle contraction and spasms, affects the functioning of voltage-sensitive sodium channels by inducing sodium influx and possesses antitumour activity, suggesting potential pharmaceutical applications. Crotamine was purified from C. durissus terrificus venom; the crystals diffracted to 1.9 Å resolution and belonged to the orthorhombic space group I2(1)2(1)2(1) or I222, with unit-cell parameters a = 67.75, b = 74.4, c = 81.01 Å. The self-rotation function indicated that the asymmetric unit contained three molecules. However, structure determination by molecular replacement using NMR-determined coordinates was unsuccessful and a search for potential derivatives has been initiated.


Subject(s)
Crotalid Venoms/chemistry , Crotalus , Animals , Crotalid Venoms/isolation & purification , Crystallization , Crystallography, X-Ray
2.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 1): 51-60, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20057049

ABSTRACT

Uridine nucleoside phosphorylase is an important drug target for the development of anti-infective and antitumour agents. The X-ray crystal structure of Salmonella typhimurium uridine nucleoside phosphorylase (StUPh) complexed with its inhibitor 2,2'-anhydrouridine, phosphate and potassium ions has been solved and refined at 1.86 A resolution (R(cryst) = 17.6%, R(free) = 20.6%). The complex of human uridine phosphorylase I (HUPhI) with 2,2'-anhydrouridine was modelled using a computational approach. The model allowed the identification of atomic groups in 2,2'-anhydrouridine that might improve the interaction of future inhibitors with StUPh and HUPhI.


Subject(s)
Bacterial Proteins/chemistry , Macromolecular Substances/chemistry , Salmonella typhimurium/enzymology , Uridine Phosphorylase/chemistry , Uridine/chemistry , Bacterial Proteins/metabolism , Crystallization , Crystallography, X-Ray , Humans , Ions/chemistry , Phosphates/chemistry , Potassium/chemistry , Protein Conformation , Uridine/analogs & derivatives , Uridine/pharmacology , Uridine Phosphorylase/metabolism
3.
PLoS One ; 4(10): e7515, 2009 Oct 20.
Article in English | MEDLINE | ID: mdl-19841750

ABSTRACT

Replication initiation is a crucial step in genome duplication and homohexameric DnaB helicase plays a central role in the replication initiation process by unwinding the duplex DNA and interacting with several other proteins during the process of replication. N-terminal domain of DnaB is critical for helicase activity and for DnaG primase interactions. We present here the crystal structure of the N-terminal domain (NTD) of H. pylori DnaB (HpDnaB) helicase at 2.2 A resolution and compare the structural differences among helicases and correlate with the functional differences. The structural details of NTD suggest that the linker region between NTD and C-terminal helicase domain plays a vital role in accurate assembly of NTD dimers. The sequence analysis of the linker regions from several helicases reveals that they should form four helix bundles. We also report the characterization of H. pylori DnaG primase and study the helicase-primase interactions, where HpDnaG primase stimulates DNA unwinding activity of HpDnaB suggesting presence of helicase-primase cohort at the replication fork. The protein-protein interaction study of C-terminal domain of primase and different deletion constructs of helicase suggests that linker is essential for proper conformation of NTD to interact strongly with HpDnaG. The surface charge distribution on the primase binding surface of NTDs of various helicases suggests that DnaB-DnaG interaction and stability of the complex is most probably charge dependent. Structure of the linker and helicase-primase interactions indicate that HpDnaB differs greatly from E.coli DnaB despite both belong to gram negative bacteria.


Subject(s)
DNA Primase/chemistry , DnaB Helicases/chemistry , Helicobacter pylori/enzymology , Cloning, Molecular , Cohort Studies , Crystallography, X-Ray/methods , DNA/chemistry , Dimerization , Escherichia coli/metabolism , Helicobacter pylori/metabolism , Hydrolysis , Molecular Conformation , Protein Structure, Tertiary , Static Electricity , Surface Plasmon Resonance
4.
Article in English | MEDLINE | ID: mdl-17909287

ABSTRACT

Uridine phosphorylase (UPh; EC 2.4.2.3) is a member of the pyrimidine nucleoside phosphorylase family of enzymes which catalyzes the phosphorolytic cleavage of the C-N glycoside bond of uridine, with the formation of ribose 1-phosphate and uracil. This enzyme has been shown to be important in the activation and catabolism of fluoropyrimidines. Modulation of its enzymatic activity may affect the therapeutic efficacy of chemotherapeutic agents. The structural investigation of the bacterial uridine phosphorylases, both unliganded and complexed with substrate/product analogues and inhibitors, may help in understanding the catalytic mechanism of the phosphorolytic cleavage of uridine. Salmonella typhimurium uridine phosphorylase has been crystallized with 2,2'-anhydrouridine. X-ray diffraction data were collected to 2.15 A. Preliminary analysis of the diffraction data indicates that the crystal belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 88.52, b = 123.98, c = 133.52 A. The solvent content is 45.51%, assuming the presence of one hexamer molecule per asymmetric unit.


Subject(s)
Salmonella typhimurium/enzymology , Uridine Phosphorylase/chemistry , Uridine/analogs & derivatives , Crystallization , Crystallography, X-Ray , Substrate Specificity , Uridine/chemistry , Uridine Phosphorylase/isolation & purification
5.
Article in English | MEDLINE | ID: mdl-17012782

ABSTRACT

Laccases are members of the blue multi-copper oxidase family that oxidize substrate molecules by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear centre. Dioxygen binds to the trinuclear centre and, following the transfer of four electrons, is reduced to two molecules of water. Crystals of the laccase from Cerrena maxima have been obtained and X-ray data were collected to 1.9 A resolution using synchrotron radiation. A preliminary analysis shows that the enzyme has the typical laccase structure and several carbohydrate sites have been identified. The carbohydrate chains appear to be involved in stabilization of the intermolecular contacts in the crystal structure, thus promoting the formation of well ordered crystals of the enzyme. Here, the results of an X-ray crystallographic study on the laccase from the fungus Cerrena maxima are reported. Crystals that diffract well to a resolution of at least 1.9 A (R factor = 18.953%; R(free) = 23.835; r.m.s.d. bond lengths, 0.06 A; r.m.s.d. bond angles, 1.07 degrees) have been obtained despite the presence of glycan moieties. The overall spatial organization of C. maxima laccase and the structure of its copper-containing active centre have been determined by the molecular-replacement method using the laccase from Trametes versicolor (Piontek et al., 2002) as a structural template. In addition, four glycan-binding sites were identified and the 1.9 A X-ray data were used to determine the previously unknown primary structure of this protein. The identity (calculated from sequence alignment) between the C. maxima laccase and the T. versicolor laccase is about 87%. Tyr196 and Tyr372 show significant extra density at the ortho positions and this has been interpreted in terms of NO(2) substituents.


Subject(s)
Basidiomycota/enzymology , Laccase/chemistry , Basidiomycota/chemistry , Crystallization , Crystallography, X-Ray , Laccase/isolation & purification , Protein Conformation
6.
J Biol Inorg Chem ; 11(8): 963-73, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16944230

ABSTRACT

Laccases are members of the blue multi-copper oxidase family. These enzymes oxidize substrate molecules by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear centre. Dioxygen binds to the trinuclear centre and following the transfer of four electrons is reduced to two molecules of water. The X-ray structure of a laccase from Cerrena maxima has been elucidated at 1.9 A resolution using synchrotron data and the molecular replacement technique. The final refinement coefficients are Rcryst = 16.8% and Rfree = 23.0%, with root mean square deviations on bond lengths and bond angles of 0.015 A and 1.51 degrees , respectively. The type 1 copper centre has an isoleucine residue at the axial position and the "resting" state of the trinuclear centre comprises a single oxygen (OH) moiety asymmetrically disposed between the two type 3 copper ions and a water molecule attached to the type 2 ion. Several carbohydrate binding sites have been identified and the glycan chains appear to promote the formation of well-ordered crystals. Two tyrosine residues near the protein surface have been found in a nitrated state.


Subject(s)
Fungal Proteins/chemistry , Laccase/chemistry , Binding Sites , Copper/chemistry , Crystallography, X-Ray , Molecular Structure , Nitrates/chemistry , Polysaccharides/chemistry , Protein Conformation , Tyrosine/chemistry , Water/chemistry
7.
Biochem Biophys Res Commun ; 342(1): 323-9, 2006 Mar 31.
Article in English | MEDLINE | ID: mdl-16480957

ABSTRACT

Spider venom sphingomyelinases D catalyze the hydrolysis of sphingomyelin via an Mg(2+) ion-dependent acid-base catalytic mechanism which involves two histidines. In the crystal structure of the sulfate free enzyme determined at 1.85A resolution, the metal ion is tetrahedrally coordinated instead of the trigonal-bipyramidal coordination observed in the sulfate bound form. The observed hyperpolarized state of His47 requires a revision of the previously suggested catalytic mechanism. Molecular modeling indicates that the fundamental structural features important for catalysis are fully conserved in both classes of SMases D and that the Class II SMases D contain an additional intra-chain disulphide bridge (Cys53-Cys201). Structural analysis suggests that the highly homologous enzyme from Loxosceles bonetti is unable to hydrolyze sphingomyelin due to the 95Gly-->Asn and 134Pro-->Glu mutations that modify the local charge and hydrophobicity of the interfacial face. Structural and sequence comparisons confirm the evolutionary relationship between sphingomyelinases D and the glicerophosphodiester phosphoesterases which utilize a similar catalytic mechanism.


Subject(s)
Evolution, Molecular , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/metabolism , Amino Acid Sequence , Binding Sites , Catalysis , Cations, Divalent/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Magnesium/chemistry , Models, Molecular , Molecular Sequence Data , Phosphoric Diester Hydrolases/classification , Phosphoric Diester Hydrolases/genetics , Protein Structure, Tertiary , Sequence Alignment , Structural Homology, Protein
8.
Nucleic Acids Res ; 33(2): 478-85, 2005.
Article in English | MEDLINE | ID: mdl-15659579

ABSTRACT

The RNA-binding ability of ribosomal protein L1 is of profound interest since the protein has a dual function as a ribosomal protein binding rRNA and as a translational repressor binding its mRNA. Here, we report the crystal structure of ribosomal protein L1 in complex with a specific fragment of its mRNA and compare it with the structure of L1 in complex with a specific fragment of 23S rRNA determined earlier. In both complexes, a strongly conserved RNA structural motif is involved in L1 binding through a conserved network of RNA-protein H-bonds inaccessible to the solvent. These interactions should be responsible for specific recognition between the protein and RNA. A large number of additional non-conserved RNA-protein H-bonds stabilizes both complexes. The added contribution of these non-conserved H-bonds makes the ribosomal complex much more stable than the regulatory one.


Subject(s)
RNA, Messenger/chemistry , RNA, Ribosomal, 23S/chemistry , RNA-Binding Proteins/chemistry , Ribosomal Proteins/chemistry , Binding Sites , Homeostasis , Models, Molecular , Nucleic Acid Conformation , RNA, Archaeal/chemistry , RNA, Archaeal/metabolism , RNA, Messenger/metabolism , RNA, Ribosomal, 23S/metabolism , RNA-Binding Proteins/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
9.
Article in English | MEDLINE | ID: mdl-16508080

ABSTRACT

The structures of mistletoe lectin I (ML-I) from Viscum album complexed with lactose and galactose have been determined at 2.3 A resolution and refined to R factors of 20.9% (Rfree = 23.6%) and 20.9 (Rfree = 24.6%), respectively. ML-I is a heterodimer and belongs to the class of ribosome-inactivating proteins of type II, which consist of two chains. The A-chain has rRNA N-glycosidase activity and irreversibly inhibits eukaryotic ribosomes. The B-chain is a lectin and preferentially binds to galactose-terminated glycolipids and glycoproteins on cell membranes. Saccharide binding is performed by two binding sites in subdomains alpha1 and gamma2 of the ML-I B-chain separated by approximately 62 A from each other. The favoured binding of galactose in subdomain alpha1 is achieved via hydrogen bonds connecting the 4-hydroxyl and 3-hydroxyl groups of the sugar moiety with the side chains of Asp23B, Gln36B and Lys41B and the main chain of 26B. The aromatic ring of Trp38B on top of the preferred binding pocket supports van der Waals packing of the apolar face of galactose and stabilizes the sugar-lectin complex. In the galactose-binding site II of subdomain gamma2, Tyr249B provides the hydrophobic stacking and the side chains of Asp235B, Gln238B and Asn256B are hydrogen-bonding partners for galactose. In the case of the galactose-binding site I, the 2-hydroxyl group also stabilizes the sugar-protein complex, an interaction thus far rarely detected in galactose-specific lectins. Finally, a potential third low-affinity galactose-binding site in subunit beta1 was identified in the present ML-I structures, in which a glycerol molecule from the cryoprotectant buffer has bound, mimicking the sugar compound.


Subject(s)
Galactose/chemistry , Lactose/chemistry , Mistletoe , Plant Preparations/chemistry , Plant Proteins/chemistry , Toxins, Biological/chemistry , Amino Acid Sequence , Binding Sites , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary , Ribosome Inactivating Proteins, Type 2 , Sequence Alignment , Sequence Homology, Amino Acid
10.
Article in English | MEDLINE | ID: mdl-16511035

ABSTRACT

Uridine phosphorylase (UPh) catalyzes the phosphorolytic cleavage of the C-N glycosidic bond of uridine to ribose 1-phosphate and uracil in the pyrimidine-salvage pathway. The crystal structure of the Salmonella typhimurium uridine phosphorylase (StUPh) has been determined at 2.5 A resolution and refined to an R factor of 22.1% and an Rfree of 27.9%. The hexameric StUPh displays 32 point-group symmetry and utilizes both twofold and threefold non-crystallographic axes. A phosphate is bound at the active site and forms hydrogen bonds to Arg91, Arg30, Thr94 and Gly26 of one monomer and Arg48 of an adjacent monomer. The hexameric StUPh model reveals a close structural relationship to Escherichia coli uridine phosphorylase (EcUPh).


Subject(s)
Salmonella typhimurium/enzymology , Uridine Phosphorylase/chemistry , Binding Sites , Crystallography, X-Ray , Escherichia coli/enzymology , Hydrogen Bonding , Molecular Structure , Protein Conformation
11.
Biochem Biophys Res Commun ; 319(4): 1314-21, 2004 Jul 09.
Article in English | MEDLINE | ID: mdl-15194511

ABSTRACT

The inhibition of phospholipase A(2)s (PLA(2)s) is of pharmacological and therapeutic interest because these enzymes are involved in several inflammatory diseases. Elaidoylamide is a powerful inhibitor of a neurotoxic PLA(2) from the Vipera ammodytes meridionalis venom. The X-ray structure of the enzyme-inhibitor complex reveals a new mode of Asp49 PLA(2) inhibition by a fatty acid hydrocarbon chain. The structure contains two identical homodimers in the asymmetric unit. In each dimer one subunit is rotated by 180 degrees with respect to the other and the two molecules are oriented head-to-tail. One molecule of elaidoylamide is bound simultaneously to the substrate binding sites of two associated neurotoxic phospholipase A(2) molecules. The inhibitor binds symmetrically to the hydrophobic channels of the two monomers. The structure can be used to design anti-inflammatory drugs.


Subject(s)
Amides , Aspartic Acid/metabolism , Enzyme Inhibitors , Oleic Acid , Phospholipases A/chemistry , Phospholipases A/metabolism , Protein Conformation , Amides/chemistry , Amides/metabolism , Animals , Crystallography, X-Ray , Dimerization , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Macromolecular Substances , Models, Molecular , Molecular Structure , Neurotoxins/metabolism , Oleic Acid/chemistry , Oleic Acid/metabolism , Oleic Acids , Phospholipases A/antagonists & inhibitors , Phospholipases A/genetics , Protein Binding , Protein Subunits/chemistry , Protein Subunits/metabolism , Viper Venoms/enzymology
12.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 4): 709-11, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15039561

ABSTRACT

The structural udp gene encoding uridine phosphorylase (UPh) was cloned from the Salmonella typhimurium chromosome and overexpressed in Escherichia coli cells. S. typhimurium UPh (StUPh) was purified to apparent homogeneity and crystallized. The primary structure of StUPh has high homology to the UPh from E. coli, but the enzymes differ substantially in substrate specificity and sensitivity to the polarity of the medium. Single crystals of StUPh were grown using hanging-drop vapor diffusion with PEG 8000 as the precipitant. X-ray diffraction data were collected to 2.9 A resolution. Preliminary analysis of the diffraction data indicated that the crystal belonged to space group P6(1(5)), with unit-cell parameters a = 92.3, c = 267.5 A. The solvent content is 37.7% assuming the presence of one StUPh hexamer per asymmetric unit.


Subject(s)
Crystallization , Salmonella typhimurium/enzymology , Uridine Phosphorylase/chemistry , Cloning, Molecular , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel
SELECTION OF CITATIONS
SEARCH DETAIL
...