Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(15): 43573-43585, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36658320

ABSTRACT

The Espinal region (Entre Ríos, Argentina) has suffered land use changes caused by expansion of the agricultural frontier. This expansion has led to an increased use of pesticides. This study is aimed at better understanding the spatial distribution of pesticides in surface water of the Estacas stream, a representative basin of the Espinal region, associated with crop production. The location and proportion of area with soybean, maize, and wheat crops in each catchment area of the basin were estimated, and surface water samples were taken to perform a pesticide screening during a period of one year. Soybean represented approximately 71% of the total cultivated area of the basin, whereas maize and wheat accounted for 15% and 14%, respectively. The analysis of 125 analytes showed the presence of 19 pesticides. The pesticide load maps showed that atrazine was detected in an area of relatively low catchment compared to other pesticides as glyphosate, which is applied in all the agricultural fields of the basin. The load of metolachlor and S-metolachlor covered a large area of the basin. The highest recorded concentrations of these pesticides were 86 µg L-1 of atrazine, 24 µg L-1 of metolachlor, 19 µg L-1 of glyphosate, and 15 µg L-1 of S-metolachlor. The results allow better understanding the environmental distribution of pesticides associated with pest control in the crops of the basin studied, the doses and times of application, and the variation in the rainfall in the basin. This study provides relevant information about how aquatic ecosystems in agricultural basins receive the diffuse contribution of pesticides, representing potential sources of water pollution. Also, the results allow supporting the design of agricultural practices and politics to improve land-use planning for the development of sustainable basins.


Subject(s)
Atrazine , Pesticides , Water Pollutants, Chemical , Pesticides/analysis , Water/analysis , Rivers , Atrazine/analysis , Ecosystem , Water Pollutants, Chemical/analysis , Environmental Monitoring , Agriculture , Crop Production
2.
Microb Ecol ; 86(2): 1082-1095, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36197502

ABSTRACT

Poultry waste has been used as fertilizer to avoid soil degradation caused by the long-term application of chemical fertilizer. However, few studies have evaluated field conditions where livestock wastes have been used for extended periods of time. In this study, physicochemical parameters, metabarcoding of the 16S rRNA gene, and ecotoxicity indexes were used for the characterization of chicken manure and poultry litter to examine the effect of their application to agricultural soils for 10 years. Poultry wastes showed high concentrations of nutrients and increased electrical conductivity leading to phytotoxic effects on seeds. The bacterial communities were dominated by typical members of the gastrointestinal tract, noting the presence of pathogenic bacteria. Soils subjected to poultry manure applications showed statistically higher values of total and extractable phosphorous, increasing the risk of eutrophication. Moreover, while the soil bacterial community remained dominated by the ones related to the biogeochemical cycles of nutrients and plant growth promotion, losses of alpha diversity were observed on treated soils. Altogether, our work would contribute to understand the effects of common local agricultural practices and support the adoption of the waste treatment process in compliance with environmental sustainability guidelines.


Subject(s)
Poultry , Soil , Animals , Soil/chemistry , Manure , Fertilizers , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Genetic Variation
3.
Environ Sci Pollut Res Int ; 29(38): 57395-57411, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35349065

ABSTRACT

Land use changes have led to the degradation of multiple ecosystem services and affected the quality of aquatic ecosystems. The aims of this study were (i) to assess the expansion of the agricultural border over the native forest of an Argentinean stream basin and (ii) to characterize the surface water quality, considering physicochemical parameters, and pesticide concentrations. The agricultural frontier expansion was estimated through the analysis of satellite image coverage. Samples of surface water were taken bimonthly for 2 years. The native forest cover decreased from 72% in 1987 to 60% in 2017 due to the sustained increase in agricultural activities. In surface water, the concentrations of cations decreased: Na > Ca > K > Mg, whereas those of anions decreased: HCO3 > > Cl > SO4 > PO4. The 84 surface water samples analyzed revealed 25 pesticides, including herbicides (44%), insecticides (28%), and fungicides (28%). Herbicides were detected in more than 60% of the samples. 2,4-D, atrazine, cyproconazole, diazinon, glyphosate, AMPA, and metolachlor were detected in all the study sites and sometimes, 2,4-D, atrazine, dicamba, and metolachlor concentrations exceeded the guideline levels. The high sampling frequency of this study and the two annual cycles of crops in the basin enabled sensing of pesticide molecules and concentrations that had not been previously detected, indicating diffuse contamination. These findings signal an emergent challenge on the Espinal agro-ecosystem integrity due to changes in land use.


Subject(s)
Atrazine , Herbicides , Pesticides , Water Pollutants, Chemical , 2,4-Dichlorophenoxyacetic Acid , Atrazine/analysis , Ecosystem , Environmental Monitoring/methods , Forests , Herbicides/chemistry , Pesticides/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Quality
4.
J Agric Food Chem ; 63(18): 4444-8, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25775388

ABSTRACT

The aim of this study was to evaluate the relationship between glyphosate and phosphate fertilizer application and their contribution to surface water runoff contamination. The study was performed in Aquic Argiudoll soil (Tezanos Pinto series). Four treatments were assessed on three dates of rainfall simulation after fertilizer and herbicide application. The soluble phosphorus in runoff water was determined by a colorimetric method. For the determination of glyphosate and aminomethylphosphonic acid (AMPA), a method based on fluorenylmethyloxycarbonyl (FMOC) group derivatization, solid phase extraction (SPE) purification, and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was employed. The application of phosphorus fertilizer resulted in an increased loss of glyphosate by runoff after 1 day of application. These results suggest the need for further study to understand the interactions and to determine appropriate application timing with the goal of reducing the pollution risk by runoff.


Subject(s)
Fertilizers/analysis , Glycine/analogs & derivatives , Herbicides/chemistry , Phosphorus/chemistry , Water Pollutants, Chemical/chemistry , Glycine/chemistry , Kinetics , Rain , Soil Pollutants/chemistry , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...