Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Entomol ; 59(4): 1451-1466, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35662344

ABSTRACT

Tick-borne diseases are a growing public health problem in the United States, and the US northeast has reported consistently high case rates for decades. Monmouth County, New Jersey, was one of the earliest jurisdictions to report Lyme disease cases in 1979 and reports several hundred cases per year nearly 40 yr later. In the time since, however, tick-borne health risks have expanded far beyond Lyme disease to include a variety of other bacterial pathogens and viruses, and additional vectors, necessitating a continually evolving approach to tick surveillance. In 2017, Monmouth County initiated an active surveillance program targeting sites across three ecological regions for collection of Ixodes scapularis Say (Acari: Ixodidae) and Amblyomma americanum L. (Acari: Ixodidae) as well as testing via qPCR for associated bacterial pathogens. During the first five years of this program (2017-2021), we report high levels of spatiotemporal variability in nymphal density and infection prevalence in both species, limiting the granularity with which human risk can be predicted from acarological data. Nonetheless, broader patterns emerged, including an ongoing trend of A. americanum dominance, risks posed by Borrelia miyamotoi, and the frequency of coinfected ticks. We present some of the first county-level, systematic surveillance of nymphal A. americanum density and infection prevalence in the northeastern US. We also documented a temporary decline in Borrelia burgdorferi that could relate to unmeasured trends in reservoir host populations. We discuss the implications of our findings for tick-borne disease ecology, public health communication, and tick surveillance strategies in endemic areas.


Subject(s)
Ixodes , Ixodidae , Lyme Disease , Tick-Borne Diseases , Animals , Humans , Ixodes/microbiology , Ixodidae/microbiology , Lyme Disease/epidemiology , Lyme Disease/microbiology , New Jersey/epidemiology , Nymph/microbiology , Prevalence , Public Health , Tick-Borne Diseases/epidemiology , United States
2.
Mol Ecol Resour ; 20(3)2020 May.
Article in English | MEDLINE | ID: mdl-32107858

ABSTRACT

The use of environmental DNA (eDNA) surveys to monitor terrestrial species has been relatively limited, with successful implementations still confined to sampling DNA from natural or artificial water bodies and soil. Sampling water for eDNA depends on proximity to or availability of water, whereas eDNA from soil is limited in its spatial scale due to the large quantities necessary for processing and difficulty in doing so. These challenges limit the widespread use of eDNA in several systems, such as surveying forests for invasive insects. We developed two new eDNA aggregation approaches that overcome the challenges of above-ground terrestrial sampling and eliminate the dependency on creating or utilizing pre-existing water bodies to conduct eDNA sampling. The first, "spray aggregation," uses spray action to remove eDNA from surface substrates and was developed for shrubs and other understorey vegetation, while the second, "tree rolling," uses physical transfer via a roller to remove eDNA from the surface of tree trunks and large branches. We tested these approaches by surveying for spotted lanternfly, Lycorma delicatula, a recent invasive pest of northeastern USA that is considered a significant ecological and economic threat to forests and agriculture. We found that our terrestrial eDNA surveys matched visual surveys, but also detected L. delicatula presence ahead of visual surveys, indicating increased sensitivity of terrestrial eDNA surveys over currently used methodology. The terrestrial eDNA approaches we describe can be adapted for use in surveying a variety of forest insects and represent a novel strategy for surveying terrestrial biodiversity.


Subject(s)
Arthropods/genetics , DNA, Environmental/genetics , Agriculture/methods , Animals , Biodiversity , DNA Barcoding, Taxonomic/methods , Environmental Monitoring/methods , Forests , Soil/parasitology , Trees/parasitology , Water/parasitology
3.
J Med Entomol ; 57(3): 974-978, 2020 05 04.
Article in English | MEDLINE | ID: mdl-31912880

ABSTRACT

Tick-borne rickettsiae are undergoing epidemiological changes in the eastern United States while human encounters with lone star ticks (Amblyomma americanum L.) have increased substantially. We used real-time polymerase chain reaction assays to test for three species of spotted fever group rickettsiae (SFGR) (Rickettsiales: Rickettsiaceae) in 1,858 nymphal A. americanum collected from Monmouth County, New Jersey, a coastal county with endemic Lyme disease and established tick surveillance. Out of the 1,858 tested, 465 (25.0%) were infected with Rickettsia amblyommatis Karpathy, a species of undetermined pathogenicity found frequently in A. americanum, while 1/1,858 (0.05%) contained Rickettsia rickettsii Brumpt, the agent of Rocky Mountain spotted fever. No ticks tested positive for mildly pathogenic Rickettsia parkeri Lackman, and no ticks were co-infected with multiple Rickettsia spp. Our results indicate that A. americanum could be involved in transmission of R. rickettsii to humans in New Jersey, albeit rarely. The much higher rates of R. amblyommatis infection are consistent with hypotheses that human sera reacting to this species could contribute to reports of mild SFGR cases.


Subject(s)
Amblyomma/microbiology , Arachnid Vectors/microbiology , Rickettsia rickettsii/isolation & purification , Rickettsia/isolation & purification , Amblyomma/growth & development , Animals , Arachnid Vectors/growth & development , New Jersey , Nymph/growth & development , Nymph/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...