Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38397504

ABSTRACT

In order to characterize red wine polymers with regard to their binding properties to aroma compounds (odorants), a qualitative and quantitative analysis of chemical degradation products after different chemical treatments (thiolytic, acidic, and alkaline depolymerization) of high -molecular-weight (HMW) fractions of red wine was performed. Using 1H NMR, LC-ToF-MS, LC-MS/MS, and HPIC revealed key structural features such as carbohydrates, organic acids, phenolic compounds, anthocyanins, anthocyanidins, amino acids, and flavan-3-ols responsible for odorant-polymer interactions. Further, NMR-based interaction studies of the selected aroma compounds 3-methylbutanol, cis-whisky lactone, 3-methylbutanoic acid, and 3-isobutyl-2-methoxypyrazine with HMW polymers after chemical treatment demonstrated a reduced interaction affinity of the polymer compared to the native HMW fractions, and further, the importance of aromatic compounds such as flavan-3-ols for the formation of odorant polymer interactions. In addition, these observations could be verified by human sensory experiments. For the first time, the combination of a compositional analysis of red wine polymers and NMR-based interaction studies with chemically treated HMW fractions enabled the direct analysis of the correlation of the polymer's structure and its interaction affinity with key odorants in red wine.

3.
J Agric Food Chem ; 71(47): 18466-18477, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37970809

ABSTRACT

The aroma of red wine is suggested to be influenced by interactions with nonvolatile polymers. To investigate this aroma binding effect in red wine, the key aroma compounds of a Primitivo red wine were quantified using GC-MS and an aroma recombinant with 27 odorants was prepared. In sensory experiments, an overall strong effect on the odor perception of the aroma recombinant was observed when high-molecular-weight (HMW) polymers of Primitivo red wine were added. An 1H NMR-based approach was developed to get an insight into the molecular mechanisms of this aroma binding effect in red wine. Evaluation of qualitative changes in the NMR spectra and quantitative time-dependent measurements revealed a clear distinction between different molecular interaction types: (i) no interactions for esters, alcohols, furanones, ketones, and C13-norisoprenoids, (ii, iii) noncovalent interactions for acids, aldehydes, and lactones, and (iv) π-π interactions for pyrazines and phenols. Additionally, the influence of the molecular weight of polymers was evaluated, where the HMW fraction 30-50 kDa showed the highest interaction activity, for example for π-π interactions. Based on these results, the new approach allowed the direct analysis of noncovalent interactions between odorants and HMW polymers and therefore allowed for the first time the description of the aroma binding effect on a molecular basis.


Subject(s)
Volatile Organic Compounds , Wine , Odorants/analysis , Wine/analysis , Alcoholic Beverages/analysis , Gas Chromatography-Mass Spectrometry/methods , Perception , Volatile Organic Compounds/chemistry
4.
J Agric Food Chem ; 71(47): 18454-18465, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37971953

ABSTRACT

Using a quantitative 1H NMR-based approach, molecular interactions between key taste active compounds and high-molecular-weight (HMW) polymers were directly investigated in red wine. Analysis of qualitative and quantitative 1H NMR spectra over time allowed a distinction of three interaction scenarios: (i) no interactions for flavon-3-ol glycosides, ellagitannins, carbohydrates, and amino acids; (ii) changes in the chemical shift to lower frequencies for flavan-3-ols and phenolic acid ethyl esters; and (iii) changes in the chemical shift to higher frequencies for phenolic acids, organic acids, inorganic salts, and alditols. Additionally, using liquid chromatography-tandem mass spectrometry (LC-MS/MS), quantitative 1H nuclear magnetic resonance (qHNMR), and high-performance ion chromatography (HPIC), a taste reconstitution model of Primitivo red wine was established for the first time. Human sensory experiments with the new taste recombinant and different HMW fractions demonstrated the influence of the tastant polymer interactions on the sour and salty taste perception of red wine and the intrinsic bitter and astringent taste of the polymers. Further, the influence of the molecular weight cutoff (MWCO) of the polymers and the pH value on the tastant polymer interactions was analyzed. Especially, the HMW fractions 30-50 kDa and >50 kDa caused strong shifts to lower and higher frequencies, respectively. NMR-based interaction studies at different pH values revealed a maximum of interactions at pH 4.0. Based on these results, flavor changes in red wine caused by tastant polymer interactions can be predicted on a molecular level in the future.


Subject(s)
Taste Perception , Wine , Humans , Chromatography, Liquid , Wine/analysis , Polymers/analysis , Tandem Mass Spectrometry , Taste , Magnetic Resonance Spectroscopy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...