Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732707

ABSTRACT

A cost-effective solution to the problems that the automotive industry is facing nowadays regarding regulations on emissions and fuel efficiency is to achieve weight reduction of automobile parts. Glass fiber-reinforced polymers are regularly used to manufacture various components, and some parts may also contain thermoplastic elastomers for toughness improvement. This work aimed to investigate the effect of styrene-(ethylene-co-butylene)-styrene triblock copolymer (E) and treated fly ash (C) on the morphological, thermal, and mechanical properties of long glass fiber (G)-reinforced polypropylene (PP). Results showed that the composites obtained through melt processing methods presented similar thermal stability and improved (nano)mechanical properties compared to 25-30 wt.% G-reinforced PP composites (PP-25G/PP-30G). Specifically, the impact strength and surface hardness were greatly improved. The addition of 20 wt.% E led to a 25-39% increase in impact strength and surface elasticity, while the addition of 6.5 wt.% C led to a 16% increase in surface hardness. The composite based on 25 wt.% G, 6.5 wt.% C, and 20 wt.% E presented the best-balanced properties (8-17% increase in impact strength, 38-41% increase in axial strain, and 35% increase in surface hardness) compared with PP-30G/PP-25G. Structural and morphological analysis confirmed the presence of a strong interaction between the components that make the composites. Based on these results, the PP-G-E-C composites could be presented as a viable material for automotive applications.

2.
Pharmaceutics ; 15(12)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38140013

ABSTRACT

The medical sector is one of the biggest consumers of single-use materials, and while the insurance of sterile media is non-negotiable, the environmental aspect is a chronic problem. Nanocellulose (NC) is one of the safest and most promising materials that can be used in medical applications due to its valuable properties like biocompatibility and biodegradability, along with its good mechanical properties and high water uptake capacity. However, NC has no bactericidal activity, which is a critical need for the effective prevention of infections in chronic diabetic wound dressing applications. Therefore, in this work, a natural product, propolis extract (PE), was used as an antibacterial agent, in different amounts, together with NC to obtain sponge-like structures (NC/PE). The scanning electron microscope (SEM) images showed well-impregnated cellulose fibers and a more compact structure with the addition of PE. According to the thermogravimetric analysis (TGA), the samples containing PE underwent thermal degradation before the unmodified NC due to the presence of volatile compounds in the extract. However, the peak degradation temperature in the first derivative thermogravimetric curves was higher for all the sponges containing PE when compared to the unmodified NC. The antibacterial efficacy of the samples was tested against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, as well as on two clinically resistant isolates. The samples completely inhibited the development of Staphylococcus aureus, and Pseudomonas aeruginosa was partially inhibited, while Escherichia coli was resistant to the PE action. Considering the physical and biological properties along with the environmental and economic benefits, the development of an NC/PE wound dressing seems promising.

3.
Gels ; 9(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37998950

ABSTRACT

Photocatalytic coatings are difficult to obtain on textile materials because of the sometimes contradictory properties that must be achieved. In order to obtain a high efficiency of a photocatalytic effect, the metal-oxide semiconductor must be found in the vicinity of the coating-air interface in order to come into direct contact with the contaminant species and allow light radiation access to its surface. Another necessary condition is related to the properties of the covering textile material as well as to the stability of the xerogel films to light and wet treatments. In this sense, we proposed a solution based on hybrid silica films generated by sol-gel processes, coatings that contain as a photocatalyst TiO2 sensitized with tetracarboxylic acid of iron (III) phthalocyanine (FeTCPc). The coatings were made by the pad-dry-cure process, using in the composition a bifunctional anchoring agent (3-glycidoxipropyltrimethoxysilane, GLYMO), a crosslinking agent (sodium tetraborate, BORAX), and a catalyst (N-methylimidazole, MIM) for the polymerization of epoxy groups. The photodegradation experiments performed on methylene blue (MB), utilized as a model contaminant, using LED or xenon arc as light sources, showed that the treatment with BORAX improves the resistance of the coatings to wet treatments but worsens their photocatalytic performances.

4.
Int J Mol Sci ; 24(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37511630

ABSTRACT

Nanocellulose (NC) is a valuable material in tissue engineering, wound dressing, and drug delivery, but its lack of antimicrobial activity is a major drawback for these applications. In this work, basil ethanolic extract (BE) and basil seed mucilage (BSM) were used to endow nanocellulose with antibacterial activity. NC/BE and NC/BE/BSM sponges were obtained from nanocellulose suspensions and different amounts of BE and BSM after freeze-drying. Regardless of the BE or BSM content, the sponges started to decompose at a lower temperature due to the presence of highly volatile active compounds in BE. A SEM investigation revealed an opened-cell structure and nanofibrillar morphology for all the sponges, while highly impregnated nanofibers were observed by SEM in NC/BE sponges with higher amounts of BE. A quantitative evaluation of the porous morphology by microcomputer tomography showed that the open porosity of the sponges varied between 70% and 82%, being lower in the sponges with higher BE/BSM content due to the impregnation of cellulose nanofibers with BE/BSM, which led to smaller pores. The addition of BE increased the specific compression strength of the NC/BE sponges, with a higher amount of BE having a stronger effect. A slight inhibition of S. aureus growth was observed in the NC/BE sponges with a higher amount of BE, and no effect was observed in the unmodified NC. In addition, the NC/BE sponge with the highest amount of BE and the best antibacterial effect in the series showed no cytotoxic effect and did not interfere with the normal development of the L929 cell line, similar to the unmodified NC. This work uses a simple, straightforward method to obtain highly porous nanocellulose structures containing antibacterial basil extract for use in biomedical applications.


Subject(s)
Ocimum basilicum , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Ocimum basilicum/chemistry , Plant Extracts/pharmacology
5.
Polymers (Basel) ; 15(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37514413

ABSTRACT

This paper describes the preparation of new PEG6000-silica-MWCNTs composites as shape-stabilized phase change materials (ssPCMs) for application in latent heat storage. An innovative method was employed to obtain the new organic-inorganic hybrid materials, in which both a part of the PEG chains, used as the phase change material, and a part of the hydroxyl functionalized multiwall carbon nanotubes (MWCNTs-OH), used as thermo-conductive fillers, were covalently connected by newly formed urethane bonds to the in-situ-generated silica matrix. The study's main aim was to investigate the optimal amount of PEG6000 that can be added to the fixed sol-gel reaction mixture so that no leakage of PEG occurs after repeated heating-cooling cycles. The findings show that the optimum PEG6000/NCOTEOS molar ratio was 2/1 (~91.5% PEG6000), because both the connected and free PEG chains interacted strongly with the in-situ-generated silica matrix to form a shape-stabilized material while preserving high phase-transition enthalpies (~153 J/G). Morphological and structural findings obtained by SEM, X-ray and Raman techniques indicated a distribution of the silica component in the amorphous phase (~27% for the optimum composition) located among the crystalline lamellae built by the folded chains of the PEG component. This composite maintained good chemical stability after a 450-cycle thermal test and had a good storage efficiency (~84%).

6.
Int J Biol Macromol ; 244: 125324, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37307975

ABSTRACT

Poly(3-hydroxybutyrate) (PHB) was blended with medium-chain-length PHAs (mcl-PHAs) for improving its flexibility while nanocellulose (NC) was added as a reinforcing agent. Even and odd-chain-length PHAs, having as main component poly(3-hydroxyoctanoate) (PHO) or poly(3-hydroxynonanoate) (PHN) were synthesized and served as PHB modifiers. The effects of PHO and PHN on the morphology, thermal, mechanical and biodegradation behaviors of PHB were different, especially in the presence of NC. The addition of mcl-PHAs decreased the storage modulus (E') of PHB blends by about 40 %. The further addition of NC mitigated this decrease bringing the E' of PHB/PHO/NC close to that of PHB and having a minor effect on the E' of PHB/PHN/NC. The biodegradability of PHB/PHN/NC was higher than that of PHB/PHO/NC, the latter's being close to that of neat PHB after soil burial for four months. The results showed a complex effect of NC, which enhanced the interaction between PHB and mcl-PHAs and decreased the size of PHO/PHN inclusions (1.9 ± 0.8/2.6 ± 0.9 µm) while increasing the accessibility of water and microorganisms during soil burial. The blown film extrusion test showed the ability of mcl-PHA and NC modified PHB to stretch forming uniform tube and supports the application of these biomaterials in the packaging sector.


Subject(s)
Nanocomposites , Polyhydroxyalkanoates , 3-Hydroxybutyric Acid , Biocompatible Materials , Poly A , Polyesters/metabolism
7.
Polymers (Basel) ; 15(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37299344

ABSTRACT

There is an ever-growing interest in recovering and recycling waste materials due to their hazardous nature to the environment and human health. Recently, especially since the beginning of the COVID-19 pandemic, disposable medical face masks have been a major source of pollution, hence the rise in studies being conducted on how to recover and recycle this waste. At the same time, fly ash, an aluminosilicate waste, is being repurposed in various studies. The general approach to recycling these materials is to process and transform them into novel composites with potential applications in various industries. This work aims to investigate the properties of composites based on silico-aluminous industrial waste (ashes) and recycled polypropylene from disposable medical face masks and to create usefulness for these materials. Polypropylene/ash composites were prepared through melt processing methods, and samples were analyzed to get a general overview of the properties of these composites. Results showed that the polypropylene recycled from face masks used together with silico-aluminous ash can be processed through industrial melt processing methods and that the addition of only 5 wt% ash with a particle size of less than 90 µm, increases the thermal stability and the stiffness of the polypropylene matrix while maintaining its mechanical strength. Further investigations are needed to find specific applications in some industrial fields.

8.
Int J Mol Sci ; 24(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37047517

ABSTRACT

The growing interest in materials derived from biomass has generated a multitude of solutions for the development of new sustainable materials with low environmental impact. We report here, for the first time, a strategy to obtain bio-based nanocomposites from epoxidized linseed oil (ELO), itaconic acid (IA), and surface-treated nanofibrillated cellulose (NC). The effect of nanofibrillated cellulose functionalized with silane (NC/S) and then grafted with methacrylic acid (NC/SM) on the properties of the resulted bio-based epoxy systems was thoroughly investigated. The differential scanning calorimetry (DSC) results showed that the addition of NCs did not influence the curing process and had a slight impact on the maximum peak temperature. Moreover, the NCs improved the onset degradation temperature of the epoxy-based nanocomposites by more than 30 °C, regardless of their treatment. The most important effect on the mechanical properties of bio-based epoxy nanocomposites, i.e., an increase in the storage modulus by more than 60% at room temperature was observed in the case of NC/SM addition. Therefore, NC's treatment with silane and methacrylic acid improved the epoxy-nanofiber interface and led to a very good dispersion of the NC/SM in the epoxy network, as observed by the SEM investigation. The dielectric results proved the suitability of the obtained bio-based epoxy/NCs materials as substitutes for petroleum-based thermosets in the fabrication of flexible electronic devices.


Subject(s)
Cellulose , Nanocomposites , Cellulose/chemistry , Silanes , Methacrylates , Nanocomposites/chemistry , Epoxy Resins/chemistry
9.
Polymers (Basel) ; 15(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37112046

ABSTRACT

The objective of this study was to investigate the effects of enzymatic hydrolysis using α-amylase from Bacillus amyloliquefaciens on the mechanical properties of starch-based films. The process parameters of enzymatic hydrolysis and the degree of hydrolysis (DH) were optimized using a Box-Behnken design (BBD) and response surface methodology (RSM). The mechanical properties of the resulting hydrolyzed corn starch films (tensile strain at break, tensile stress at break, and Young's modulus) were evaluated. The results showed that the optimum DH for hydrolyzed corn starch films to achieve improved mechanical properties of the film-forming solutions was achieved at a corn starch to water ratio of 1:2.8, an enzyme to substrate ratio of 357 U/g, and an incubation temperature of 48 °C. Under the optimized conditions, the hydrolyzed corn starch film had a higher water absorption index of 2.32 ± 0.112% compared to the native corn starch film (control) of 0.81 ± 0.352%. The hydrolyzed corn starch films were more transparent than the control sample, with a light transmission of 78.5 ± 0.121% per mm. Fourier-transformed infrared spectroscopy (FTIR) analysis showed that the enzymatically hydrolyzed corn starch films had a more compact and solid structure in terms of molecular bonds, and the contact angle was also higher, at 79.21 ± 0.171° for this sample. The control sample had a higher melting point than the hydrolyzed corn starch film, as indicated by the significant difference in the temperature of the first endothermic event between the two films. The atomic force microscopy (AFM) characterization of the hydrolyzed corn starch film showed intermediate surface roughness. A comparison of the data from the two samples showed that the hydrolyzed corn starch film had better mechanical properties than the control sample, with a greater change in the storage modulus over a wider temperature range and higher values for the loss modulus and tan delta, indicating that the hydrolyzed corn starch film had better energy dissipation properties, as shown by thermal analysis. The improved mechanical properties of the resulting film of hydrolyzed corn starch were attributed to the enzymatic hydrolysis process, which breaks the starch molecules into smaller units, resulting in increased chain flexibility, improved film-forming ability, and stronger intermolecular bonds.

10.
Polymers (Basel) ; 15(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36679293

ABSTRACT

Natural fibers-reinforced polymer composites have progressed rapidly due to their undeniable advantages. Most of the commercial polypropylene (PP)-based materials are characterized by either high impact toughness or high stiffness, while the manufacture of PP composites with both good toughness and stiffness is challenging at present. In this work, poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) and poly(styrene-b-butadiene-b-styrene) (SBS) copolymers were used in different amounts as modifiers in PP/hemp fibers (HF) composites, with the aim to use them for electrical vehicle parts. The interface in these multiphase systems was controlled by the addition of maleated polypropylene (MAPP). SEBS and SBS showed different effects on the elongation at break of the blends and the corresponding composites due to the HF that stiffened the multiphase systems. Similarly, a different action of MAPP was observed in the composites containing SEBS or SBS: higher Young's and storage moduli were obtained for the composite containing SBS, while greater elongation at break and impact strength values were recorded for the SEBS-containing system. In addition, a remarkable dispersion in the MAPP-containing composite and two times smaller average particle size were revealed by the SEM analysis for the SEBS particles compared to the SBS ones. The higher affinity of SEBS for PP compared to that for SBS and the different morphological characteristics of the systems containing SEBS and SBS may explain the different effects of these impact modifiers on the mechanical properties of the composites. The composites developed in this work were designed as substitutes for the fully synthetic polymeric materials or metal components used in the manufacturing of automotive parts.

11.
Polymers (Basel) ; 14(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36559727

ABSTRACT

In this work, an economically feasible procedure was employed to produce poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)-based foams. Thermally expandable microspheres (TESs) were used as a blowing agent, while bacterial cellulose (BC) nanofibers served both as a reinforcing agent and as a means of improving biocompatibility. PHBV was plasticized with acetyltributylcitrate to reduce the processing temperature and ensure the maximum efficiency of the TES agent. The morphological investigation results for plasticized PHBV foams showed well-organized porous structures characterized by a porosity of 65% and the presence of both large pores (>100 µm) and finer ones, with a higher proportion of pores larger than 100 µm being observed in the PHBV nanocomposite containing TESs and BC. The foamed structure allowed an increase in the water absorption capacity of up to 650% as compared to the unfoamed samples. TESs and BC had opposite effects on the thermal stability of the plasticized PHBV, with TESs decreasing the degradation temperature by about 17 °C and BC raising it by 3−4 °C. A similar effect was observed for the melting temperature. Regarding the mechanical properties, the TESs had a flexibilizing effect on plasticized PHBV, while BC nanofibers showed a stiffening effect. An in vitro cytotoxicity test showed that all PHBV compounds exhibited high cell viability. The addition of TESs and BC nanofibers to PHBV biocomposites enabled balanced properties, along with lower costs, making PHBV a more attractive biomaterial for engineering, packaging, or medical device applications.

12.
Materials (Basel) ; 15(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36363186

ABSTRACT

The structure-property relationship of dielectric elastomers, as well as the methods of improving the control of this relationship, has been widely studied over the last few years, including in some of our previous works. In this paper, we study the control, improvement, and correlation, for a significant range of temperatures, of the mechanical and dielectric properties of polystyrene-b-(ethylene-co-butylene)-b-styrene (SEBS) and maleic-anhydride-grafted SEBS (SEBS-MA) by using graphite (G) as filler in various concentrations. The aim is to analyze the suitability of these composites for converting electrical energy into mechanical energy or vice versa. The dielectric spectroscopy analysis performed in the frequency range of 10 to 1 MHz and at temperatures between 27 and 77 °C emphasized an exponential increase in real permittivity with G concentration, a low level of dielectric losses (≈10-3), as well as the stability of dielectric losses with temperature for high G content. These results correlate well with the increase in mechanical stiffness with an increase in G content for both SEBS/G and SEBS-MA/G composites. The activation energies for the dielectric relaxation processes detected in SEBS/G and SEBS-MA/G composites were also determined and discussed in connection with the mechanical, thermal, and structural properties resulting from thermogravimetric analysis, differential scanning calorimetry, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses.

13.
Polymers (Basel) ; 14(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36365713

ABSTRACT

In this work, cellulose nanofibers (CNF) were surface treated by plasma and grafted with poly(ethylene glycol)methyl ether methacrylate (PEGMMA) for increasing mechanical strength and hydrophobicity. The surface characteristics of the sponges were studied by scanning electron microscopy, micro-computed tomography, and Fourier transform infrared spectroscopy, which demonstrated successful surface modification. Plasma treatment applied to CNF suspension led to advanced defibrillation, and the resulting sponges (CNFpl) exhibited smaller wall thickness than CNF. The grafting of PEGMMA led to an increase in the wall thickness of the sponges and the number of larger pores when compared with the non-grafted counterparts. Sponges with increased hydrophobicity demonstrated by an almost 4 times increase in the water contact angle and better mechanical strength proved by 2.5 times increase in specific compression strength were obtained after PEGMMA grafting of plasma treated CNF. Cells cultivated on both neat and PEGMMA-grafted CNF sponges showed high viability (>99%). Remarkably, CNF grafted with PEGMMA showed better cell viability as compared with the untreated CNF sample; this difference is statistically significant (p < 0.05). In addition, the obtained sponges do not trigger an inflammatory response in macrophages, with TNF-α secretion by cells in contact with CNFpl, CNF-PEGMMA, and CNFpl-PEGMMA samples being lower than that observed for the CNF sample. All these results support the great potential of cellulose nanofibers surface treated by plasma and grafted with PEGMMA for biomedical applications.

14.
Polymers (Basel) ; 14(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36235947

ABSTRACT

A series of poly(butylene sebacate) (PBSe) aliphatic polyesters were successfully synthesized by the melt polycondensation of sebacic acid (Se) and 1,4-butanediol (BDO), two monomers manufactured on an industrial scale from biomass. The number average molecular weight (Mn) in the range from 6116 to 10,779 g/mol and the glass transition temperature (Tg) of the PBSe polyesters were tuned by adjusting the feed ratio between the two monomers. Polylactic acid (PLA)/PBSe blends with PBSe concentrations between 2.5 to 20 wt% were obtained by melt compounding. For the first time, PBSe's effect on the flexibility and toughness of PLA was studied. As shown by the torque and melt flow index (MFI) values, the addition of PBSe endowed PLA with both enhanced melt processability and flexibility. The tensile tests and thermogravimetric analysis showed that PLA/PBSe blends containing 20 wt% PBSe obtained using a BDO molar excess of 50% reached an increase in elongation at break from 2.9 to 108%, with a negligible decrease in Young's modulus from 2186 MPa to 1843 MPa, and a slight decrease in thermal performances. These results demonstrated the plasticizing efficiency of the synthesized bio-derived polyesters in overcoming PLA's brittleness. Moreover, the tunable properties of the resulting PBSe can be of great industrial interest in the context of circular bioeconomy.

15.
Int J Biol Macromol ; 221: 381-397, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36058396

ABSTRACT

In this work, oxidized sucrose (OS), which is a safe bio-based and non-toxic polyaldehyde, was used as a crosslinker in defibrillated bacterial cellulose (BC) sponges obtained by freeze-drying. For mimicking the proteins' crosslinking, BC was first modified with an aminosilane to partially replace the OH groups on the BC surface with more reactive amino groups. Further, the aminosilane-grafted bacterial cellulose (BCA) was crosslinked with OS in different concentrations and thermally cured. Functionalized bacterial celluloses showed a good thermal stability, comparable to that of unmodified cellulose and much improved mechanical properties. A threefold increase in the compression strength was obtained for the BCA scaffold after crosslinking and curing. This was correlated with the uniform pore structure emphasized by the micro-CT and SEM analyses. The OS-crosslinked BCA scaffolds were not cytotoxic and showed a porosity of around 80 %, which was almost 100 % open porosity. This study shows that the crosslinking of aminated BC scaffolds with OS allows the obtaining of 3D cellulose structures with good mechanical properties and high porosity, suitable for soft tissue engineering. The results recommend this new method as an innovative approach to obtaining biomaterial scaffolds that mimic the natural extracellular matrix.


Subject(s)
Nanofibers , Nanofibers/chemistry , Cellulose/chemistry , Tissue Scaffolds/chemistry , Sucrose/pharmacology , Tissue Engineering/methods , Biocompatible Materials/chemistry , Porosity
16.
Materials (Basel) ; 15(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36079359

ABSTRACT

Innovative composites based on polypropylene waste impurified cu HDPE (PPW) combined with two thermoplastic block-copolymers, namely styrene-butadiene-styrene (SBSBC) and styrene-isoprene-styrene (SISBC) block-copolymers, and up to 10 wt% nano-clay, were obtained by melt blending. SBSBC and SISBC with almost the same content of polystyrene (30 wt%) were synthesized by anionic sequential polymerization and used as compatibilizers for PPW. Optical microscopy evaluation of the PPW composites showed that the n-clay was encapsulated into the elastomer. Addition of n-clay, together with SBSBC or SISBC, increased the interphase surface of the components in the PPW composites and enhanced the superficial area/volume ratio, which led to a recycled material with improved performance. The data resulting from differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), mechanical evaluation, and dynamic mechanical analysis (DMA) revealed that PPW reinforcement with n-clay and styrene-diene block-copolymers allows the obtaining of composites with favorable mechanical and thermal properties, and excellent impact strength for potential engineering applications.

17.
Molecules ; 27(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35458593

ABSTRACT

The growing concern about environmental pollution has generated an increased demand for biobased and biodegradable materials intended particularly for the packaging sector. Thus, this study focuses on the effect of two different cellulosic reinforcements and plasticized poly(3-hydroxybutyrate) (PHB) on the properties of poly(lactic acid) (PLA). The cellulose fibers containing lignin (CFw) were isolated from wood waste by mechanical treatment, while the ones without lignin (CF) were obtained from pure cellulose by acid hydrolysis. The biocomposites were prepared by means of a melt compounding-masterbatch technique for the better dispersion of additives. The effect of the presence or absence of lignin and of the size of the cellulosic fibers on the properties of PLA and PLA/PHB was emphasized by using in situ X-ray diffraction, polarized optical microscopy, atomic force microscopy, and mechanical and thermal analyses. An improvement of the mechanical properties of PLA and PLA/PHB was achieved in the presence of CF fibers due to their smaller size, while CFw fibers promoted an increased thermal stability of PLA/PHB, owing to the presence of lignin. The overall thermal and mechanical results show the great potential of using cheap cellulose fibers from wood waste to obtain PLA/PHB-based materials for packaging applications as an alternative to using fossil based materials. In addition, in situ X-ray diffraction analysis over a large temperature range has proven to be a useful technique to better understand changes in the crystal structure of complex biomaterials.


Subject(s)
Cellulose , Lignin , 3-Hydroxybutyric Acid , Cellulose/chemistry , Hydroxybutyrates , Lignin/chemistry , Polyesters/chemistry , Polymers/chemistry
18.
Polymers (Basel) ; 13(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34833269

ABSTRACT

This work proposes a new method for obtaining poly(3-hydroxybutyrate) (PHB)/microfibrillated cellulose (MC) composites with more balanced properties intended for the substitution of petroleum-based polymers in packaging and engineering applications. To achieve this, the MC surface was adjusted by a new chemical route to enhance its compatibility with the PHB matrix: (i) creating active sites on the surface of MC with γ-methacryloxypropyltrimethoxysilane (SIMA) or vinyltriethoxysilane (SIV), followed by (ii) the graft polymerization of methacrylic acid (MA). The high efficiency of the SIMA-MA treatment and the lower efficiency in the case of SIV-MA were proven by the changes observed in the Fourier transform infrared FTIR spectra of celluloses. All modified celluloses and the PHB composites containing them showed good thermal stability close to the processing temperature of PHB. SIMA-modified celluloses acted as nucleating agents in PHB, increasing its crystallinity and favoring the formation of smaller spherulites. A uniform dispersion of SIMA-modified celluloses in PHB as a result of the good compatibility between the two phases was observed by scanning electron microscopy and many agglomerations of fibers in the composite with unmodified MC. The dual role of SIMA-MA treatment, as both compatibilizer and plasticizer, was pointed out by mechanical and rheological measurements. This new method to modify MC and obtain PHB/MC composites with more balanced stiffness-toughness properties could be a solution to the high brittleness and poor processability of PHB-based materials.

19.
Polymers (Basel) ; 13(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34685321

ABSTRACT

Masterbatches from a linear poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) and halloysite nanotubes (HNT-QM) were obtained in different conditions of temperature and shear using two co-rotating twin-screw extruders. The influence of screw configuration and melt processing conditions on the morpho-structural, thermal and mechanical properties of masterbatches at macro and nanoscale was studied. A good dispersion of halloysite nanotubes and better thermal stability and tensile and nanomechanical properties were obtained at a lower temperature profile and higher screw speed. The effect of masterbatches, the best and worst alternatives, on the properties of a polypropylene (PP)-glass fiber (GF) composite was also evaluated. Double hardness, tensile strength and modulus and four times higher impact strength were obtained for PP/GF composites containing masterbatches compared to pristine PP. However, the masterbatch with the best properties led further to enhanced mechanical properties of the PP/GF composite. A clear difference between the effects of the two masterbatches was obtained by nanoindentation and nanoscratch tests. These analyses proved to be useful for the design of polymer composites for automotive parts, such as bumpers or door panels. This study demonstrated that setting-up the correct processing conditions is very important to obtain the desired properties for automotive applications.

20.
Int J Biol Macromol ; 190: 780-791, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34517031

ABSTRACT

Poly(3-hydroxybutyrate) (PHB) is a promising substitute to petroleum-based polymers in packaging and biomedical applications provided that its melt processability and degradability are improved. A new method to control the properties of PHB by using cheap calcium stearate (CS) as a lubricant and decomposition catalyst in melt-mixed PHB-CS compounds was first used. CS is composed of a metallic cation, which promotes PHB degradation, and a hydrophobic anion that improves the compatibility with PHB and processability. An environmentally friendly melt mixing technique was employed to obtain the PHB-CS compounds. Incorporation of 0.5 or 5 wt% CS reduced the melt viscosity and molecular weight of PHB, decreased the melting temperature with up to 5 °C, the crystallization temperature with more than 25 °C, and the degradation temperature with 15 and 40 °C, respectively. In small amounts (0.05 wt%), CS improved the processability and mechanical properties of PHB. In higher amount (0.5 wt%), CS slightly improved the Young's modulus, reduced the tensile strength and enhanced degradation. A better control of thermal and mechanical properties of PHB is, thus, possible by using different CS amount and processing conditions. These results are relevant for PHB application in the context of the global transition to biodegradable packaging.


Subject(s)
Hydroxybutyrates/chemistry , Lubricants/pharmacology , Polyesters/chemistry , Stearic Acids/pharmacology , Temperature , Calorimetry, Differential Scanning , Catalysis , Crystallization , Elastic Modulus , Microscopy, Atomic Force , Spectroscopy, Fourier Transform Infrared , Surface Properties , Tensile Strength , Thermogravimetry , Time Factors , Torque
SELECTION OF CITATIONS
SEARCH DETAIL
...