Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 150: 107554, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38878753

ABSTRACT

Plasma membranes are vital biological structures, serving as protective barriers and participating in various cellular processes. In the field of super-resolution optical microscopy, stimulated emission depletion (STED) nanoscopy has emerged as a powerful method for investigating plasma membrane-related phenomena. However, many applications of STED microscopy are critically restricted by the limited availability of suitable fluorescent probes. This paper reports on the development of two amphiphilic membrane probes, SHE-2H and SHE-2N, specially designed for STED nanoscopy. SHE-2N, in particular, demonstrates quick and stable plasma membrane labelling with negligible intracellular redistribution. Both probes exhibit outstanding photostability and resolution improvement in STED nanoscopy, and are also suited for two-photon excitation microscopy. Furthermore, microscopy experiments and cytotoxicity tests revealed no noticeable cytotoxicity of probe SHE-2N at concentration used for fluorescence imaging. Spectral analysis and fluorescence lifetime measurements conducted on probe SHE-2N using giant unilamellar vesicles, revealed that emission spectra and fluorescence lifetimes exhibited minimal sensitivity to lipid composition variations. These novel probes significantly augment the arsenal of tools available for high-resolution plasma membrane research, enabling a more profound exploration of cellular processes and dynamics.

2.
Pharmaceutics ; 14(2)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35214057

ABSTRACT

Oxidation is the second most common degradation pathway for pharmaceuticals, after hydrolysis. However, in contrast to hydrolysis, oxidation is mechanistically more complex and produces a wider range of degradation products; oxidation is thus harder to control. The propensity of a drug towards oxidation is established during forced degradation studies. However, a more realistic insight into degradation in the solid state can be achieved with accelerated studies of mixtures of drugs and excipients, as the excipients are the most common sources of impurities that have the potential to initiate oxidation of a solid drug product. Based on the results of these studies, critical parameters can be identified and appropriate measures can be taken to avoid the problems that oxidation poses to the quality of a drug product. This article reviews the most common types of oxidation mechanisms, possible sources of reactive oxygen species, and how to minimize the oxidation of a solid drug product based on a well-planned accelerated study.

SELECTION OF CITATIONS
SEARCH DETAIL
...