Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Medicina (Kaunas) ; 57(6)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199767

ABSTRACT

Background and Objectives: Tumor necrosis factor alpha (TNF-α) is proatherogenic and associated with the risk of acute ischemic events, although the mechanisms that regulate TNF-α expression in stable coronary artery disease (SCAD) are not fully understood. We investigated whether metabolic, inflammatory, and epigenetic (microRNA (miRNA)) markers are associated with TNF-α expression in SCAD. Materials and Methods: Patients with SCAD were prospectively recruited and their metabolic and inflammatory profiles were assessed. TNF-α levels were assessed using an enzyme-linked immunosorbent assay. The relative expression of six circulating miRNAs associated with the regulation of inflammation and/or atherosclerosis was determined. Results: Of the 24 included patients with the mean age of 65 (9) years, 88% were male, and 54% were diabetic. The TNF-α levels were (median (interquartile range)) 1.0 (0.7-1.1) pg/mL. The percentage of glycosylated hemoglobin (r = 0.418, p = 0.042), serum triglyceride levels (r = 0.429, p = 0.037), and C-reactive protein levels (r = 0.407, p = 0.048) were positively correlated with TNF-α levels. Of the candidate miRNAs, miR-146a expression levels were negatively correlated with TNF-α levels (as indicated by r = 0.500, p = 0.035 for correlation between delta cycle threshold (ΔCt) miR-146a and TNF-α levels). In multivariate analysis, serum triglyceride levels and miR-146a expression levels were independently associated with TNF-α levels. miR-146 expression levels were not associated with metabolic or other inflammatory parameters and were negatively correlated with the number of coronary vessels with obstructive disease (as indicated by r = 0.556, p = 0.017 for correlation between ΔCt miR-146a and number of diseased vessels). Conclusions: miR-146a expression levels were negatively correlated with TNF-α levels in patients with SCAD, irrespective of other metabolic or inflammatory markers, and with the severity of coronary artery disease. The results add to the knowledge on the role of miR-146a in TNF-α-based inflammation in SCAD and support future research on the potential therapeutic use of miR-146a in such a clinical scenario.


Subject(s)
Coronary Artery Disease , MicroRNAs , Aged , Biomarkers , Coronary Artery Disease/genetics , Female , Humans , Inflammation , Male , MicroRNAs/genetics , Tumor Necrosis Factor-alpha
2.
J Clin Med ; 10(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671744

ABSTRACT

Cigarette smoking is a risk factor for the development of peripheral artery disease (PAD), although the proatherosclerotic mediators of cigarette smoking are not entirely known. We explored whether circulating microRNAs (miRNAs) are dysregulated in cigarette smokers and associated with the presence of PAD. Ninety-four participants were recruited, including 58 individuals without and 36 with PAD, 51 never smokers, 28 prior smokers, and 15 active smokers. The relative expression of six circulating miRNAs with distinct biological roles (miR-21, miR-27b, miR-29a, miR-126, miR-146, and miR-218) was assessed. Cigarette smoking was associated with the presence of PAD in multivariate analysis. Active smokers, but not prior smokers, presented miR-27b downregulation and higher leukocyte, neutrophil, and lymphocyte counts; miR-27b expression levels were independently associated with active smoking. Considering the metabolic and/or inflammatory abnormalities induced by cigarette smoking, miR-27b was independently associated with the presence of PAD and downregulated in patients with more extensive PAD. In conclusion, the atheroprotective miR-27b was downregulated in active smokers, but not in prior smokers, and miR-27b expression was independently associated with the presence of PAD. These unreported data suggest that the proatherogenic properties of cigarette smoking are mediated by a downregulation of miR-27b, which may be attenuated by smoking cessation.

3.
Diagnostics (Basel) ; 11(2)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33669374

ABSTRACT

The mechanisms that regulate the systemic extent of atherosclerosis are not fully understood. We investigated whether the expression of circulating miRNAs is associated with the extent of stable atherosclerosis to a single territory or multiple territories (polyvascular) and with the severity of atherosclerosis in each territory. Ninety-four participants were prospectively recruited and divided into five age- and sex-matched groups: presenting no atherosclerosis, isolated coronary atherosclerosis, coronary and lower extremity atherosclerosis, coronary and carotid atherosclerosis, and atherosclerosis of the coronary, lower extremity, and carotid territories. The expression of six circulating miRNAs with distinct biological roles was assessed. The expression of miR-27b and miR-146 differed across groups (p < 0.05), showing a decrease in the presence of atherosclerosis, particularly in the three territories. miR-27b and miR-146 expression decreased in association with a higher severity of coronary, lower extremity, and carotid atherosclerosis. Polyvascular atherosclerosis involving the three territories was independently associated with a decreased miR-27b and miR-146 expression. Both miRNAs presented an area under the curve of ≥0.75 for predicting polyvascular atherosclerosis involving the three territories. To conclude, miR-27b and miR-146 were associated with the presence of severe polyvascular atherosclerosis and with the atherosclerosis severity in each territory. Both are potential biomarkers of severe systemic atherosclerosis.

4.
Int J Mol Sci ; 21(7)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32230931

ABSTRACT

Complex organisms are associations of different cells that coexist and collaborate creating a living consortium, the holobiont. The relationships between the holobiont members are essential for proper homeostasis of the organisms, and they are founded on the establishment of complex inter-connections between all the cells. Non-coding RNAs are regulatory molecules that can also act as communication signals between cells, being involved in either homeostasis or dysbiosis of the holobionts. Eukaryotic and prokaryotic cells can transmit signals via non-coding RNAs while using specific extracellular conveyors that travel to the target cell and can be translated into a regulatory response by dedicated molecular machinery. Within holobionts, non-coding RNA regulatory signaling is involved in symbiotic and pathogenic relationships among the cells. This review analyzes current knowledge regarding the role of non-coding RNAs in cell-to-cell communication, with a special focus on the signaling between cells in multi-organism consortia.


Subject(s)
Cell Communication/genetics , Cell Communication/physiology , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Signal Transduction , Animals , Anthozoa/physiology , Bacteria , Bacterial Physiological Phenomena , Dysbiosis , Mammals , Metagenome , MicroRNAs , Microbiota/physiology , Plant Physiological Phenomena , Plants , Symbiosis/genetics , Symbiosis/physiology , Transcriptome
5.
Adv Exp Med Biol ; 1229: 49-64, 2020.
Article in English | MEDLINE | ID: mdl-32285404

ABSTRACT

The transcriptional complexity generated by the human genomic output is within the core of cell and organ physiology, but also could be in the origin of pathologies. In cardiovascular diseases, the role of specific families of RNA transcripts belonging to the group of the non-coding RNAs started to be unveiled in the last two decades. The knowledge of the functional rules and roles of non-coding RNAs in the context of cardiovascular diseases is an important factor to derive new diagnostic methods, but also to design targeted therapeutic strategies. The characterization and analysis of ncRNA function requires a deep knowledge of the regulatory mechanism of these RNA species that often relies on intricated interaction networks. The use of specific bioinformatic tools to interrogate biological data and to derive functional implications is particularly relevant and needs to be extended to the general practice of translational researchers. This chapter briefly summarizes the bioinformatic tools and strategies that could be used for the characterization and functional analysis of non-coding RNAs, with special emphasis in their applications to the cardiovascular field.


Subject(s)
Cardiovascular Diseases , Computational Biology/methods , RNA, Untranslated , Cardiovascular Diseases/genetics , Humans , Research Design
6.
Adv Exp Med Biol ; 1229: 79-104, 2020.
Article in English | MEDLINE | ID: mdl-32285406

ABSTRACT

Non-coding RNAs (ncRNAs) are important regulatory players in human cells that have been shown to modulate different cellular processes and biological functions through controlling gene expression, being also involved in pathological conditions such as cardiovascular diseases. Among them, long non-coding RNAs (lncRNAs) and circular (circRNAs) could act as competing endogenous RNAs (ceRNAs) sequestering other ncRNAs. This entangled network of interactions has been reported to trigger the decay of the targeted ncRNAs having important roles in gene regulation. Growing evidences have been demonstrated that the regulatory mechanism underlying the crosstalk between different ncRNA species, namely lncRNAs, circRNAs and miRNAs has also an important role in the pathophysiological processes of cardiovascular diseases. In this chapter, the main regulatory relationship among lncRNAs, circRNAs and miRNAs were summarized and their role in the control and development of cardiovascular diseases was highlighted.


Subject(s)
Cardiovascular Diseases , RNA, Untranslated , Cardiovascular Diseases/genetics , Gene Expression Regulation , Gene Regulatory Networks , Humans
7.
Int J Mol Sci ; 21(2)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31936839

ABSTRACT

Non-coding regulatory RNAs are generated as a core output of the eukaryotic genomes, being essential players in cell biology. At the organism level, they are key functional actors in those tissues and organs with limited proliferation capabilities such as the heart. The role of regulatory networks mediated by non-coding RNAs in the pathophysiology of cardiovascular conditions is starting to be unveiled. However, a deeper knowledge of the functional interactions among the diverse non-coding RNA families and their phenotypic consequences is required. This review presents the current knowledge about the functional crosstalk between circRNAs and other biomolecules in the framework of the cardiovascular diseases.


Subject(s)
Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Gene Regulatory Networks , RNA, Circular/metabolism , Animals , Biomarkers , Humans , MicroRNAs/genetics , RNA, Circular/classification , RNA, Circular/genetics , RNA, Untranslated/metabolism , RNA-Binding Proteins
8.
Plant Sci ; 288: 110241, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31521215

ABSTRACT

Fungal pathogens are an important threat for plant crops, being responsible for important reductions of production yields and a consequent economic impact. Among the molecular mediators of fungal infections of plant crops, non-coding RNAs (ncRNAs) have been described as relevant players either in the plant immune responses and mechanism of defense or in the colonization of plant tissues by fungi. Acting as a mechanism of defense, some plant small ncRNAs such as miRNAs and tasiRNAs can be secreted by cells and directed to target the transcriptome of pathogenic fungi, triggering an RNAi-like interference mechanism able to silence the expression of specific fungal genes. The detailed knowledge of this mechanism of defense against fungal pathogens could open new possibilities for the protection of human important crops. To infer putative functional relationships mediated by ncRNA communication, we performed a prospective analysis to determine potential plant miRNAs able to target the genome of fungal pathogens, which resulted in the description of enriched specific plant miRNA families and their putative fungal targets that could be further studied in the context of plant-fungi interactions. The expression profile of specific members of the enriched miRNAs families showed an infection-dependent behavior in laboratory models of infection. Plant miRNAs showed sequence complementarity with coding genes of their cognate fungal pathogens. Plant miRNAs could potentially target fungal genes belonging to functional families related to stress response, membrane architecture, vacuolar transport, membrane traffic, and anabolic processes. Families of specific infection-responsive miRNAs are included in the putative plant defense mechanism.


Subject(s)
Magnaporthe/physiology , MicroRNAs/genetics , Oryza/genetics , Plant Immunity/genetics , RNA, Plant/genetics , Computer Simulation , MicroRNAs/metabolism , Oryza/immunology , Oryza/microbiology , RNA, Plant/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...