Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Environ Virol ; 14(1): 77-88, 2022 03.
Article in English | MEDLINE | ID: mdl-34792781

ABSTRACT

Rural environments lack basic sanitation services. Facilities for obtaining water and disposing sewage are often under the initiative of each resident, who may not be able to build and maintain them properly. Thus, water for human consumption is subject to fecal contamination and, consequently, the presence of waterborne pathogens, such as enteric viruses. This study evaluated fecal contamination of water samples from individual sources used for domestic water supply on small farms in the state of Goiás, Brazil. Samples were collected from 78 houses whose water sources were tubular wells, dug wells, springs, and surface waters. Escherichia coli (EC) bacteria, analyzed by the defined chromogenic substrate method, was used as a traditional indicator of fecal contamination. The enteric viruses Human mastadenovirus (HAdV) and Enterovirus (EV), analyzed by qPCR, were tested as complementary indicators of fecal contamination. At least one of these markers was found in 89.7% of the samples. Detection rates were 79.5% for EC, 52.6% for HAdV, and 5.1% for EV. The average concentration for EC was 8.82 × 101 most probable number (MPN) per 100 mL, while for HAdV and EV the concentrations were 7.51 × 105 and 1.89 × 106 genomic copies (GC) per liter, respectively. EC was the most frequent marker in ground and surface water samples. HAdV was detected significantly more frequently in groundwater than in surface water and was more efficient in indicating contamination in tubular wells. There was no association of frequencies or correlation of concentrations between EC and HAdV. HAdV indicated human fecal contamination and performed well as a complementary indicator. The results reveal that a large part of the analyzed population is vulnerable to waterborne diseases caused by enteric pathogens.


Subject(s)
Adenoviruses, Human , Enterovirus , Adenoviruses, Human/genetics , Brazil , Enterovirus/genetics , Environmental Monitoring , Escherichia coli/genetics , Feces/microbiology , Humans , Water , Water Microbiology
2.
Environ Sci Pollut Res Int ; 28(27): 35941-35957, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33682056

ABSTRACT

The quality of the water consumed by a given community is related to its quality of life. In this sense, this study aimed to evaluate, from the perspective of health risk, the physical, chemical, and microbiological quality of drinking water, in a quilombola community, and the qualitative aspects intrinsic to its use and storage. For this, water samples, collected at the exits of the collective water supply system and from eight cisterns that store rainwater, used for human consumption, were analyzed. The samples were subjected to physical, chemical, and microbiological analysis, including adenovirus (HAdV) and enterovirus (EV). The probability of an individual acquiring infection through water consumption was determined by quantitative microbiological risk analysis using HAdV and Escherichia coli (EC) as reference pathogens. The results showed that the water in the deep tubular well had 270.8 mg/L of total hardness, leading to the rejection of its consumption by ingestion. Alternativity, the people in the community consume rainwater stored in cisterns. For this type of water, the presence of heterotrophic bacteria was found in 75%, total coliform was present in 100%, and Enterococci were detected in 25%. Furthermore, EC was present in 25%, EV in 50%, and HAdV in 100% of the samples. The probability of annual infection with HAdV and EC was, in the worst situation, 100% and 1.3%, respectively. Regarding the qualitative and quantitative aspects, there was a significant positive correlation between the absence of EC and the withdrawal of water from the cistern using a pump and the opposite when the withdrawal was carried out using a bucket or hose. Based on the results found, it is important to carry out actions aimed at improving water quality and, consequently, the quality of life of people living in the study community.


Subject(s)
Quality of Life , Water , Brazil , Humans , Risk Assessment , Water Microbiology , Water Quality , Water Supply
3.
Methods Mol Biol ; 1571: 327-341, 2017.
Article in English | MEDLINE | ID: mdl-28281265

ABSTRACT

This chapter describes two different methodologies used to improve the analytical performance of colorimetric paper-based biosensors. Microfluidic paper-based analytical devices (µPADs) have been produced by a stamping process and CO2 laser ablation and modified, respectively, through an oxidation step and incorporation of silica nanoparticles on the paper structure. Both methods are employed in order to overcome the largest problem associated with colorimetric detection, the heterogeneity of the color distribution in the detection zones. The modification steps are necessary to improve the interaction between the paper surface and the selected enzymes. The enhanced performance has ensured reliability for quantitative analysis of clinically relevant compounds.


Subject(s)
Biosensing Techniques/methods , Colorimetry/methods , Microfluidic Analytical Techniques/methods , Microfluidics/methods , Nanoparticles , Paper , Biological Assay/instrumentation , Biological Assay/methods , Biomarkers/urine , Biosensing Techniques/instrumentation , Colorimetry/instrumentation , Equipment Design , Humans , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Microfluidics/instrumentation , Oxidation-Reduction
4.
Analyst ; 139(21): 5560-7, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25204446

ABSTRACT

This paper describes a silica nanoparticle-modified microfluidic paper-based analytical device (µPAD) with improved color intensity and uniformity for three different enzymatic reactions with clinical relevance (lactate, glucose, and glutamate). The µPADs were produced on a Whatman grade 1 filter paper and using a CO2 laser engraver. Silica nanoparticles modified with 3-aminopropyltriethoxysilane were then added to the paper devices to facilitate the adsorption of selected enzymes and prevent the washing away effect that creates color gradients in the colorimetric measurements. According to the results herein described, the addition of silica nanoparticles yielded significant improvements in color intensity and uniformity. The resulting µPADs allowed for the detection of the three analytes in clinically relevant concentration ranges with limits of detection (LODs) of 0.63 mM, 0.50 mM, and 0.25 mM for lactate, glucose, and glutamate, respectively. An example of an analytical application has been demonstrated for the semi-quantitative detection of all three analytes in artificial urine. The results demonstrate the potential of silica nanoparticles to avoid the washing away effect and improve the color uniformity and intensity in colorimetric bioassays performed on µPADs.


Subject(s)
Microfluidics/instrumentation , Nanoparticles , Paper , Silicon Dioxide/chemistry , Adsorption , Microscopy, Electron, Scanning
5.
Analyst ; 139(9): 2127-32, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24618915

ABSTRACT

A systematic investigation was conducted to study the effect of paper type on the analytical performance of a series of microfluidic paper-based analytical devices (µPADs) fabricated using a CO2 laser engraver. Samples included three different grades of Whatman chromatography paper, and three grades of Whatman filter paper. According to the data collected and the characterization performed, different papers offer a wide range of flow rate, thickness, and pore size. After optimizing the channel widths on the µPAD, the focus of this study was directed towards the color intensity and color uniformity formed during a colorimetric enzymatic reaction. According to the results herein described, the type of paper and the volume of reagents dispensed in each detection zone can determine the color intensity and uniformity. Therefore, the objective of this communication is to provide rational guidelines for the selection of paper substrates for the fabrication of µPADs.


Subject(s)
Color , Microfluidics/instrumentation , Colorimetry , Filtration , Paper
6.
Electrophoresis ; 33(17): 2660-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22965709

ABSTRACT

This paper reports the fabrication of polyester-toner (PT) electrophoresis microchips with improved analytical performance and extended lifetime. This has been achieved with a better understanding about the EOF generation and the influence of some parameters including the channel dimensions (width and depth), the injection mode, and the addition of organic solvent to the running buffer. The analytical performance of the PT devices was investigated using a capacitively coupled contactless conductivity detector and inorganic cations as model analytes. The proposed devices have exhibited EOF values of (3.4 ± 0.2) × 10(-4) cm(2) V(-1) s(-1) with good stability over 25 consecutive runs. It has been found that the EOF magnitude depends on the channel dimension, i.e. the wider the channel, the higher the EOF value. The separation efficiency for inorganic cations ranged from 13 000 to 50 000 plates/m. The LOD found for K(+) , Na(+) , and Li(+) were 4.2, 7.3, and 23 µM, respectively. In addition, the same PT device has been used by three consecutive days. Lately, due to improved analytical performance, it was carried out by the first time the detection of inorganic cations in real samples such as energetic drinks and pharmaceutical formulations.


Subject(s)
Electrophoresis, Microchip/instrumentation , Polyesters/chemistry , Cations/analysis , Electric Conductivity , Electroosmosis , Electrophoresis, Microchip/methods , Energy Drinks/analysis , Equipment Design , Hydrogen-Ion Concentration , Models, Chemical , Pharmaceutical Preparations/chemistry , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...