Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22271099

ABSTRACT

Seroprevalence studies have been used throughout the COVID-19 pandemic to monitor infection and immunity. These studies are often reported in peer-reviewed journals, but the academic writing and publishing process can delay reporting and thereby public health action. Seroprevalence estimates have been reported faster in preprints and media, but with concerns about data quality. We aimed to (i) describe the timeliness of SARS-CoV-2 serosurveillance reporting by publication venue and study characteristics and (ii) identify relationships between timeliness, data validity, and representativeness to guide recommendations for serosurveillance efforts. We included seroprevalence studies published between January 1, 2020 and December 31, 2021 from the ongoing SeroTracker living systematic review. For each study, we calculated timeliness as the time elapsed between the end of sampling and the first public report. We evaluated data validity based on serological test performance and correction for sampling error, and representativeness based on use of a representative sample frame and adequate sample coverages. We examined how timeliness varied with study characteristics, representativeness, and data validity using univariate and multivariate Cox regression. We analyzed 1,844 studies. Median time to publication was 154 days (IQR 64-255), varying by publication venue (journal articles: 212 days, preprints: 101 days, institutional reports: 18 days, and media: 12 days). Multivariate analysis confirmed the relationship between timeliness and publication venue and showed that general population studies were published faster than special population or health care worker studies; there was no relationship between timeliness and study geographic scope, geographic region, representativeness, or serological test performance. Seroprevalence studies in peer-reviewed articles and preprints are published slowly, highlighting the limitations of using the academic literature to report seroprevalence during a health crisis. More timely reporting of seroprevalence estimates can improve their usefulness for surveillance, enabling more effective responses during health emergencies.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21266471

ABSTRACT

BackgroundRisk of bias (RoB) assessments are a core element of evidence synthesis but can be time consuming and subjective. We aimed to develop a decision rule-based algorithm for RoB assessment of seroprevalence studies. MethodsWe developed the SeroTracker-RoB algorithm. The algorithm derives seven objective and two subjective critical appraisal items from the Joanna Briggs Institute Critical Appraisal Checklist for Prevalence studies and implements decision rules that determine study risk of bias based on the items. Decision rules were validated using the SeroTracker seroprevalence study database, which included non-algorithmic RoB judgements from two reviewers. We quantified efficiency as the mean difference in time for the algorithmic and non-algorithmic assessments of 80 randomly selected articles, coverage as the proportion of studies where the decision rules yielded an assessment, and reliability using intraclass correlations comparing algorithmic and non-algorithmic assessments for 2,070 articles. ResultsA set of decision rules with 61 branches was developed using responses to the nine critical appraisal items. The algorithmic approach was faster than non-algorithmic assessment (mean reduction 2.32 minutes [SD 1.09] per article), classified 100% (n=2,070) of studies, and had good reliability compared to non-algorithmic assessment (ICC 0.77, 95% CI 0.74-0.80). We built the SeroTracker-RoB Excel Tool which embeds this algorithm for use by other researchers. ConclusionsThe SeroTracker-RoB decision-rule based algorithm was faster than non-algorithmic assessment with complete coverage and good reliability. This algorithm enabled rapid, transparent, and reproducible RoB evaluations of seroprevalence studies and may support evidence synthesis efforts during future disease outbreaks. This decision rule-based approach could be applied to other types of prevalence studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...