Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
J Anim Ecol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837453

ABSTRACT

In seasonal environments, the fitness of animals depends upon the successful integration of life-history stages throughout their annual cycle. Failing to do so can lead to negative carry-over effects where individuals are transitioning into the next season in different states, consequently affecting their future performance. However, carry-over effects can be masked by individual quality when individuals vary in their efficiency at acquiring resources year after year (i.e. 'quality'), leading to cross-seasonal consistency in individual performance. Here we investigated the relative importance of carry-over effects and individual quality in determining cross-seasonal interactions and consequences for breeding success over the full annual cycle of a migratory seabird (black-legged kittiwake Rissa tridactyla). We monitored the reproduction and annual movement of kittiwakes over 13 years using geolocators to estimate their breeding success, distribution and winter energy expenditure. We combined this with an experimental approach (clutch removal experiment, 2 years) to manipulate the reproductive effort irrespective of individual quality. Piecewise path analyses showed that successful breeders reproduced earlier and were more likely to breed successfully again the following year. This positive interaction among consecutive breeding stages disappeared after controlling for individual quality, suggesting that quality was dominant in determining seasonal interactions. Moreover, controlling experimentally for individual quality revealed underlying carry-over effects that were otherwise masked by quality, with breeding costs paid in higher energy expenditure and delayed onset of reproduction. We highlight the need to combine an experimental approach along with long-term data while assessing apparent carry-over effects in wild animals, and their potential impact on fitness and population demography.

2.
Proc Natl Acad Sci U S A ; 121(21): e2315513121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739784

ABSTRACT

Mercury (Hg) is a heterogeneously distributed toxicant affecting wildlife and human health. Yet, the spatial distribution of Hg remains poorly documented, especially in food webs, even though this knowledge is essential to assess large-scale risk of toxicity for the biota and human populations. Here, we used seabirds to assess, at an unprecedented population and geographic magnitude and high resolution, the spatial distribution of Hg in North Atlantic marine food webs. To this end, we combined tracking data of 837 seabirds from seven different species and 27 breeding colonies located across the North Atlantic and Atlantic Arctic together with Hg analyses in feathers representing individual seabird contamination based on their winter distribution. Our results highlight an east-west gradient in Hg concentrations with hot spots around southern Greenland and the east coast of Canada and a cold spot in the Barents and Kara Seas. We hypothesize that those gradients are influenced by eastern (Norwegian Atlantic Current and West Spitsbergen Current) and western (East Greenland Current) oceanic currents and melting of the Greenland Ice Sheet. By tracking spatial Hg contamination in marine ecosystems and through the identification of areas at risk of Hg toxicity, this study provides essential knowledge for international decisions about where the regulation of pollutants should be prioritized.


Subject(s)
Feathers , Mercury , Animals , Mercury/analysis , Atlantic Ocean , Feathers/chemistry , Arctic Regions , Greenland , Environmental Monitoring/methods , Birds , Food Chain , Water Pollutants, Chemical/analysis , Ecosystem
3.
Mar Pollut Bull ; 202: 116365, 2024 May.
Article in English | MEDLINE | ID: mdl-38608430

ABSTRACT

Plastic pollution threatens many organisms around the world. In particular, the northern fulmar, Fulmarus glacialis, is known to ingest high quantities of plastics. Since data are sparse in the Eurasian Arctic, we investigated plastic burdens in the stomachs of fulmar fledglings from Kongsfjorden, Svalbard. Fifteen birds were collected and only particles larger than 1 mm were extracted, characterised and analysed with Fourier Transform InfraRed spectroscopy. All birds ingested plastic. In total, 683 plastic particles were found, with an average of 46 ± 40 SD items per bird. The most common shape, colour and polymer were hard fragment, white, and polyethylene, respectively. Microplastics (< 5 mm) were slightly more represented than mesoplastics (> 5 mm). This study confirms high numbers of ingested plastics in fulmar fledglings from Svalbard and suggests that fulmar fledglings may be suitable for temporal monitoring of plastic pollution, avoiding potential biases caused by age composition or breeding state.


Subject(s)
Birds , Environmental Monitoring , Plastics , Animals , Plastics/analysis , Svalbard , Water Pollutants, Chemical/analysis , Microplastics/analysis , Arctic Regions
4.
Chemosphere ; 355: 141721, 2024 May.
Article in English | MEDLINE | ID: mdl-38522675

ABSTRACT

For decades, the northern fulmar (Fulmarus glacialis) has been found to ingest and accumulate high loads of plastic due to its feeding ecology and digestive tract morphology. Plastic ingestion can lead to both physical and toxicological effects as ingested plastics can be a pathway for hazardous chemicals into seabirds' tissues. Many of these contaminants are ubiquitous in the environment and the contribution of plastic ingestion to the uptake of those contaminants in seabirds' tissues is poorly known. In this study we aimed at quantifying several plastic-related chemicals (PRCs) -PBDE209, several dechloranes and several phthalate metabolites- and assessing their relationship with plastic burdens (both mass and number) to further investigate their potential use as proxies for plastic ingestion. Blood samples from fulmar fledglings and liver samples from both fledgling and non-fledgling fulmars were collected for PRC quantification. PBDE209 and dechloranes were quantified in 39 and 33 livers, respectively while phthalates were quantified in plasma. Plastic ingestion in these birds has been investigated previously and showed a higher prevalence in fledglings. PBDE209 was detected in 28.2 % of the liver samples. Dechlorane 602 was detected in all samples while Dechloranes 601 and 604 were not detected in any sample. Dechlorane 603 was detected in 11 individuals (33%). Phthalates were detected in one third of the analysed blood samples. Overall, no significant positive correlation was found between plastic burdens and PRC concentrations. However, a significant positive relationship between PBDE209 and plastic number was found in fledglings, although likely driven by one outlier. Our study shows the complexity of PRC exposure, the timeline of plastic ingestion and subsequent uptake of PRCs into the tissues in birds, the additional exposure of these chemicals via their prey, even in a species ingesting high loads of plastic.


Subject(s)
Environmental Monitoring , Phthalic Acids , Plastics , Humans , Animals , Plastics/analysis , Birds , Gastrointestinal Tract/chemistry , Eating
5.
Mar Pollut Bull ; 196: 115646, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37832498

ABSTRACT

An increasing number of organisms from the polar regions are reported contaminated by plastic. Rarely a non-killing sampling method is used. In this study we wanted to assess plastic levels using stomach flushing and evaluate the method suitability for further research and monitoring. The stomach of 22 fulmars from Bjørnøya, Svalbard, were flushed with water in the field. On return to the laboratory, the regurgitated content was digested using potassium hydroxide. The extracted plastics were visually characterised and analysed with spectroscopy. Only three birds had plastics in their stomach, totaling 36 particles, most of them microplastics (< 5 mm). The plastic burdens are much lower than previously reported in Svalbard. The stomach flushing is assumed not to allow the collection of the gizzard content. This is a major limitation as most of the plastics accumulate in the fulmar's gizzard. However, the method is still useful for studies investigating plastic ingestion dynamics, allowing to sample the same individuals over time.


Subject(s)
Plastics , Water Pollutants, Chemical , Humans , Animals , Plastics/analysis , Microplastics/analysis , Gastrointestinal Contents/chemistry , Environmental Monitoring/methods , Birds , Eating , Water Pollutants, Chemical/analysis
6.
Sci Total Environ ; 868: 161413, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36621503

ABSTRACT

Maternal effects are thought to be essential tools for females to modulate offspring development. The selective deposition of avian maternal hormones could therefore allow females to strategically adjust the phenotype of their offspring to the environmental situation encountered. However, at the time of egg formation, several contaminants are also transferred to the egg, including per- and polyfluoroalkyl substances (PFAS) which are ubiquitous organic contaminants with endocrine disrupting properties. It is, however, unknown if they can disrupt maternal hormone deposition. In this study we explored relationships between female PFAS burden and maternal deposition in the eggs of steroids (dihydrotestosterone, androstenedione and testosterone), glucocorticoids (corticosterone) and thyroid hormones (triiodothyronine and thyroxine) in a population of the Arctic-breeding black-legged kittiwake (Rissa tridactyla). Egg yolk hormone levels were unrelated to female hormone plasma levels. Second-laid eggs had significantly lower concentrations of androstenedione than first-laid eggs. Triiodothyronine yolk levels were decreasing with increasing egg mass but increasing with increasing females' body condition. Testosterone was the only transferred yolk hormone correlated to maternal PFAS burden: specifically, we found a positive correlation between testosterone in yolks and circulating maternal perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDcA) and perfluoroundecanoic acid (PFUnA) in first-laid eggs. This correlative study provides a first insight into the potential of some long-chain perfluoroalkyl acids to disrupt maternal hormones deposition in eggs and raises the question about the consequences of increased testosterone deposition on the developing embryo.


Subject(s)
Charadriiformes , Fluorocarbons , Animals , Female , Androstenedione , Triiodothyronine , Testosterone , Birds
7.
Environ Int ; 171: 107640, 2023 01.
Article in English | MEDLINE | ID: mdl-36525896

ABSTRACT

With the current possible presence of thousands of PFAS compounds in industrial emissions, there is an increasing need to assess the impacts of PFAS regulation of conventional PFAS on one hand and the exposure to emerging and yet unknown PFAS on the other. Today's analytical methodologies using targeted approaches are not sufficient to determine the complete suite of PFAS present. To evaluate the presence of unknown PFAS, we investigated in this study the occurrence of an extended range of target PFAS in various species from the marine and terrestrial Norwegian environment, in relation to the extractable organofluorine (EOF), which yields the total amount of organofluorine. The results showed a varying presence of extractable fluorinated organics, with glaucous gull eggs, otter liver and polar bear plasma showing the highest EOF and a high abundance of PFAS as well. The targeted PFAS measurements explained 1% of the organofluorine for moose liver as the lowest and 94% for otter liver as the highest. PFCAs like trifluoroacetic acid (TFA, reported semi-quantitatively), played a major role in explaining the organic fluorine present. Emerging PFAS as the perfluoroethylcyclohexane sulfonate (PFECHS), was found in polar bear plasma in quantifiable amounts for the first time, confirming earlier detection in arctic species far removed from emission sources. To enable a complete organic fluorine mass balance in wildlife, new approaches are needed, to uncover the presence of new emerging PFAS as cyclic- or ether PFAS together with chlorinated PFAS as well as fluorinated organic pesticides and pharmaceuticals.


Subject(s)
Fluorocarbons , Otters , Ursidae , Animals , Animals, Wild , Fluorine/analysis , Norway
8.
Mar Pollut Bull ; 185(Pt B): 114333, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36372049

ABSTRACT

The northern fulmar Fulmarus glacialis ingests a larger number of (micro)plastics than many other seabirds due to its feeding habits and gut morphology. Since 2002, they are bioindicators of marine plastics in the North Sea region, and data are needed to extend the programme to other parts of their distribution areas, such as the Arctic. In this study, we provide data on ingested plastics by fulmars collected in 1997 in Kongsfjorden, Svalbard. An extraction protocol with KOH was used and for half of the birds, the gizzard and the proventricular contents were analysed separately. Ninety-one percent of the birds had ingested at least one piece of plastic with an average of 10.3 (±11.9 SD) pieces. The gizzards contained significantly more plastics than the proventriculus. Hard fragments and polyethylene were the most common characteristics. Twelve percent of the birds exceeded the EcoQO value of 0.1 g.


Subject(s)
Gastrointestinal Contents , Plastics , Animals , Plastics/analysis , Gastrointestinal Contents/chemistry , Environmental Monitoring/methods , Svalbard , Birds , Arctic Regions , Polyethylene/analysis
9.
Sci Total Environ ; 844: 156944, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35752241

ABSTRACT

Since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of mercury (Hg) on Arctic biota in 2011 and 2018, there has been a considerable number of new Arctic bird studies. This review article provides contemporary Hg exposure and potential health risk for 36 Arctic seabird and shorebird species, representing a larger portion of the Arctic than during previous AMAP assessments now also including parts of the Russian Arctic. To assess risk to birds, we used Hg toxicity benchmarks established for blood and converted to egg, liver, and feather tissues. Several Arctic seabird populations showed Hg concentrations that exceeded toxicity benchmarks, with 50 % of individual birds exceeding the "no adverse health effect" level. In particular, 5 % of all studied birds were considered to be at moderate or higher risk to Hg toxicity. However, most seabirds (95 %) were generally at lower risk to Hg toxicity. The highest Hg contamination was observed in seabirds breeding in the western Atlantic and Pacific Oceans. Most Arctic shorebirds exhibited low Hg concentrations, with approximately 45 % of individuals categorized at no risk, 2.5 % at high risk category, and no individual at severe risk. Although the majority Arctic-breeding seabirds and shorebirds appeared at lower risk to Hg toxicity, recent studies have reported deleterious effects of Hg on some pituitary hormones, genotoxicity, and reproductive performance. Adult survival appeared unaffected by Hg exposure, although long-term banding studies incorporating Hg are still limited. Although Hg contamination across the Arctic is considered low for most bird species, Hg in combination with other stressors, including other contaminants, diseases, parasites, and climate change, may still cause adverse effects. Future investigations on the global impact of Hg on Arctic birds should be conducted within a multi-stressor framework. This information helps to address Article 22 (Effectiveness Evaluation) of the Minamata Convention on Mercury as a global pollutant.


Subject(s)
Mercury , Animals , Arctic Regions , Birds , Environmental Monitoring , Feathers/chemistry , Humans , Mercury/analysis
10.
Environ Sci Technol ; 56(4): 2443-2454, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35112833

ABSTRACT

Mercury (Hg) is highly toxic in its methylated form (MeHg), and global change is likely to modify its bioavailability in the environment. However, it is unclear how top predators will be impacted. We studied blood Hg concentrations of chick-rearing black-legged kittiwakes Rissa tridactyla (2000-2019) in Svalbard (Norway). From 2000 to 2019, Hg concentrations followed a U-shaped trend. The trophic level, inferred from nitrogen stable isotopes, and chlorophyll a (Chl a) concentrations better predicted Hg concentrations, with positive and U-shaped associations, respectively. As strong indicators of primary productivity, Chl a concentrations can influence production of upper trophic levels and, thus, fish community assemblage. In the early 2000s, the high Hg concentrations were likely related to a higher proportion of Arctic prey in kittiwake's diet. The gradual input of Atlantic prey in kittiwake diet could have resulted in a decrease in Hg concentrations until 2013. Then, a new shift in the prey community, added to the shrinking sea ice-associated release of MeHg in the ocean, could explain the increasing trend of Hg observed since 2014. The present monitoring provides critical insights about the exposure of a toxic contaminant in Arctic wildlife, and the reported increase since 2014 raises concern for Arctic seabirds.


Subject(s)
Charadriiformes , Mercury , Animals , Arctic Regions , Chlorophyll A , Environmental Monitoring , Mercury/analysis , Nitrogen Isotopes
11.
Environ Sci Technol ; 56(10): 6091-6102, 2022 05 17.
Article in English | MEDLINE | ID: mdl-34874166

ABSTRACT

In birds, maternal transfer is a major exposure route for several contaminants, including poly- and perfluoroalkyl substances (PFAS). Little is known, however, about the extent of the transfer of the different PFAS compounds to the eggs, especially for alternative fluorinated compounds. In the present study, we measured legacy and emerging PFAS, including Gen-X, ADONA, and F-53B, in the plasma of prelaying black-legged kittiwake females breeding in Svalbard and the yolk of their eggs. We aimed to (1) describe the contaminant levels and patterns in both females and eggs, and (2) investigate the maternal transfer, that is, biological variables and the relationship between the females and their eggs for each compound. Contamination of both females and eggs were dominated by linPFOS then PFUnA or PFTriA. We notably found 7:3 fluorotelomer carboxylic acid─a precursor of long-chain carboxylates─in 84% of the egg yolks, and provide the first documented finding of ADONA in wildlife. Emerging compounds were all below the detection limit in female plasma. There was a linear association between females and eggs for most of the PFAS. Analyses of maternal transfer ratios in females and eggs suggest that the transfer is increasing with PFAS carbon chain length, therefore the longest chain perfluoroalkyl carboxylic acids (PFCAs) were preferentially transferred to the eggs. The mean ∑PFAS in the second-laid eggs was 73% of that in the first-laid eggs. Additional effort on assessing the outcome of maternal transfers on avian development physiology is essential, especially for PFCAs and emerging fluorinated compounds which are under-represented in experimental studies.


Subject(s)
Charadriiformes , Fluorocarbons , Animals , Arctic Regions , Birds , Carboxylic Acids , Eggs/analysis , Environmental Monitoring , Female , Fluorocarbons/analysis
12.
Environ Int ; 157: 106794, 2021 12.
Article in English | MEDLINE | ID: mdl-34358913

ABSTRACT

Given the increasing attention on the occurrence of microplastics in the environment, and the potential environmental threats they pose, there is a need for researchers to move quickly from basic understanding to applied science that supports decision makers in finding feasible mitigation measures and solutions. At the same time, they must provide sufficient, accurate and clear information to the media, public and other relevant groups (e.g., NGOs). Key requirements include systematic and coordinated research efforts to enable evidence-based decision making and to develop efficient policy measures on all scales (national, regional and global). To achieve this, collaboration between key actors is essential and should include researchers from multiple disciplines, policymakers, authorities, civil and industry organizations, and the public. This further requires clear and informative communication processes, and open and continuous dialogues between all actors. Cross-discipline dialogues between researchers should focus on scientific quality and harmonization, defining and accurately communicating the state of knowledge, and prioritization of topics that are critical for both research and policy, with the common goal to establish and update action plans for holistic benefit. In Norway, cross-sectoral collaboration has been fundamental in supporting the national strategy to address plastic pollution. Researchers, stakeholders and the environmental authorities have come together to exchange knowledge, identify knowledge gaps, and set targeted and feasible measures to tackle one of the most challenging aspects of plastic pollution: microplastic. In this article, we present a Norwegian perspective on the state of knowledge on microplastic research efforts. Norway's involvement in international efforts to combat plastic pollution aims at serving as an example of how key actors can collaborate synergistically to share knowledge, address shortcomings, and outline ways forward to address environmental challenges.


Subject(s)
Microplastics , Plastics , Environmental Pollution/prevention & control , Norway
13.
Sci Total Environ ; 772: 145575, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-33770875

ABSTRACT

The research on plastic pollution is increasing worldwide but little is known about the contamination levels in the Arctic by microplastics and other anthropogenic particles (APs) such as dyed fibres. In this study, two different sampling designs were developed to collect 68 sediment subsamples in five locations in a remote Arctic fjord, Kongsfjorden, northwest of Svalbard. Those five stations composed a transect from a sewage outlet recently installed close to the northernmost settlement, Ny-Ålesund, to an offshore site. Plastics and other APs were extracted by density separation and analysed by both Raman and Fourier Transform Infrared spectroscopy. Among the 37 APs found, 19 were microplastics. The others were classified as APs due to the presence of a dye or another additive. On average, 0.33 AP 100 g-1 were found in the surface sediment and their sizes ranged between 0.10 and 6.31 mm. The site most polluted by APs was located at the mouth of the fjord while the less polluted ones were the offshore and the outlet sites. We believe that currents in the fjord have carried APs towards the mouth of the fjord where an eddy could retain APs which might sink the seafloor due to various reasons (ingestion & packaging, fouling-induced changes in buoyancy). In the cores, several different APs were found down to a depth of 12 cm. These APs may have been present in the sediments for decades or been transported deeper by biota. Here we provided data on plastic but also on other anthropogenic particles from a remote fjord in Svalbard.

14.
Sci Total Environ ; 774: 145174, 2021 Jun 20.
Article in English | MEDLINE | ID: mdl-33609829

ABSTRACT

Concern on relatively high levels and the potential bioaccumulation of decabromodiphenylether (BDE209) has led to a European 8-year monitoring program on trends in BDE209 concentrations in birds, sewage sludge and sediments from seven countries. BDE209 was analysed in four environmental matrices: sparrowhawk eggs (UK), glaucous gull eggs (Bear Island, Norway), sewage sludge (UK, Ireland and the Netherlands) and sediment (France, Germany, the Netherlands, UK and Ireland). BDE209 was detected in most of the glaucous gull and sparrow hawk eggs but neither increasing nor decreasing trends in these BDE209 levels were observed. An indication for debromination of BDE209 in sparrowhawk eggs was found. BDE209 concentrations in sediments ranged from very low ng/g (88 ng/g on an organic carbon (OC) basis) concentrations, in the rivers Elbe, Ems, Seine and the Outer Humber, to high µg/g (120 µg/g OC), in the Western Scheldt, Liverpool Bay and River Mersey. Apart from decreasing values in the Western Scheldt sediment no further decreases in BDE209 concentrations were observed over time, neither in sediment nor in sewage sludge showing that the voluntary emissions control program of the bromine industry only had a local effect. In contrast to the sewage sludge samples from the Netherlands (mean 355 ng/g dry weight (dw) or 1026 ng/g OC), the BDE209 concentrations in the UK increased at all sites from 2006 to 2011 (8092 ng/g dw or 22,367 ng/g OC). The BDE209 levels in several UK sediments and sewage sludge were still very high at the end of the program in 2012, most likely caused by frequent use of BDE209 in the textile industry. This may be indicative of the persistence of BDE209 and the limited degradation into lower brominated congeners in sediment, although it cannot be excluded that ongoing BDE209 emissions have played a role as well.


Subject(s)
Sewage , Water Pollutants, Chemical , Animals , Birds , Environmental Monitoring , France , Geologic Sediments , Germany , Ireland , Netherlands , Norway , Sewage/analysis , Water Pollutants, Chemical/analysis
15.
Environ Int ; 139: 105511, 2020 06.
Article in English | MEDLINE | ID: mdl-32278193

ABSTRACT

Human activities leave traces of marine litter around the globe. The Arctic is, despite its remoteness, emerging as an area of no exception to this environmental issue. Arctic sea ice has previously been found to constitute a temporal sink of microplastics, but the potential release and subsequent fate of microplastics in the marine environment are yet unknown. Furthermore, the relative importance of local sources of microplastics in the Arctic marine environment is under discussion. In this study, the concentration and distribution of anthropogenic microparticles (AMPs, <5 mm, including microplastics) have been investigated in marine waters and sea ice of Svalbard. Seawater samples throughout the water column and floating sea ice samples were collected along a transect originating in Rijpfjorden, reaching northwards to the sea ice-edge. Seawater samples were also collected along a transect extending westwards from head to mouth of Kongsfjorden. Samples were collected throughout the water column with stations positioned to enable detection of potential AMP emissions from the wastewater outlet in Ny-Ålesund. Along both transects, environmental parameters were measured to explore potential correlations with AMP distribution. High concentrations of AMPs were detected in sea ice (158 ±â€¯155 AMPs L-1). Based on both AMP concentrations and characteristics, AMPs identified in seawater of the marginal ice zone are to a large extent likely released during the melting of sea ice. The release of AMPs during summer melting of sea ice was concomitantly taking place with the ice-edge bloom, suggesting increased bioavailability to Arctic marine biota. Concentrations of AMPs were up to an order of magnitude higher in Kongsfjorden (up to 48.0 AMPs L-1) than in Rijpfjorden (up to 7.4 AMPs L-1). The distribution and composition of AMPs in Kongsfjorden suggest the wastewater outlet in Ny-Ålesund to be a likely source. Our results emphasize the importance of local point- and diffuse sources of AMPs in the Arctic and stress the urgency of considering their associated environmental impact. Implementation of regulatory policy is of importance, particularly since human activities and environmental pressures are increasing in the Arctic.


Subject(s)
Ice Cover , Wastewater , Arctic Regions , Humans , Plastics , Seawater , Svalbard
16.
Environ Sci Technol ; 53(22): 12974-12988, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31664835

ABSTRACT

Plastic pollution, especially microplastics (MP) pollution, is a hot topic in both mainstream media and scientific literature. Although rivers are potentially the major transport pathway of this pollution to the sea, plastic contamination in freshwater bodies is comparatively understudied. Microplastic pollution in freshwater fish is of growing interest, and while few studies exist, discrepancies do occur in the sampling, extraction, and identification of MP and in the expression of the results. Even though those differences hamper comparisons between some studies, a comparative work has been performed to identify the factors influencing MP ingestion by fish and consequently to target potential ecological traits that can be used to monitor species. Monitoring plastic ingested by fish will give relevant ecological information on MP pollution. This review focuses on MP ingestion by wild freshwater and estuarine fish. In addition to providing an overview of the existing data concerning contamination levels in wild freshwater fish, we aimed to (1) propose several overall recommendations on the methodologies applicable to all biota, (2) compare MP contamination levels in fish and in their environment, and (3) determine which parameters could help to define fish species for monitoring.


Subject(s)
Plastics , Water Pollutants, Chemical , Animals , Environmental Monitoring , Fishes , Fresh Water
17.
Environ Sci Technol ; 53(21): 12835-12845, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31589028

ABSTRACT

Arctic-breeding seabirds contain high levels of many anthropogenic contaminants, which they deposit through guano to the tundra near their colonies. Nutrient-rich soil in vicinity to seabird colonies are favorable habitats for soil invertebrates, such as springtails (Collembola), which may result in exposure to seabird-derived contaminants. We quantified a wide range of lipid-soluble and protein-associated environmental contaminants in two springtail species (Megaphorura arctica and Hypogastrura viatica) and their respective habitats (soil/moss) collected underneath seabird cliffs. Although springtails are commonly used in laboratory toxicity tests, this is the first study to measure concentrations of persistent organic pollutants (POPs) and mercury (Hg) in springtails from the field, and to study biotransportation of contaminants by seabirds to soil fauna. We categorized the sites a priori as of low, medium, or high seabird influence, based on the seabird abundance and species composition. This ranking was reflected in increasing δ15N values in soil/moss and springtails with increasing seabird influence. We found clear indications of seabirds impacting the terrestrial soil environments with organic contaminants, and that concentrations were higher in soil and moss close to the bird cliff, compared to farther away. However, we did not find a relationship between contaminant concentration in springtails and the concentrations in soil/moss, or with level of seabird influence. Our study indicates a low uptake of contaminants in the soil fauna, despite seabird-derived contamination of their habitat.


Subject(s)
Arthropods , Soil , Animals , Arctic Regions , Environmental Monitoring , Tundra
18.
Mar Pollut Bull ; 142: 129-134, 2019 May.
Article in English | MEDLINE | ID: mdl-31232285

ABSTRACT

Standardized methods for the digestion of biota for microplastic analysis are currently lacking. Chemical methods can be effective, but can also cause damage to some polymers. Enzymatic methods are known to be gentler, but often laborious, expensive and time consuming. A novel tissue digestion method with pancreatic enzymes and a pH buffer (Tris) is here presented in a comparison to a commonly applied digestion protocol with potassium hydroxide. The novel protocol demonstrates a highly efficient removal of bivalve tissue (97.7 ±â€¯0.2% dry weight loss) already over-night. Furthermore, it induces no impairment in terms of ability to correctly identify four pre-weathered plastic polymers and six textile fiber polymers by Fourier transform infrared spectroscopy after exposure. The high-throughput protocol requires minimal handling, is of low cost and does not pose risk to the performer or the environment. It is therefore suggested as a candidate for a standardized digestion protocol, enabling successful analysis of microplastics ingested by bivalves.


Subject(s)
Bivalvia/chemistry , Ecotoxicology/methods , Plastics/isolation & purification , Water Pollutants, Chemical/isolation & purification , Animals , Buffers , Environmental Monitoring/methods , Enzymes/chemistry , Hydrogen-Ion Concentration , Hydroxides/chemistry , Plastics/analysis , Potassium Compounds/chemistry , Spectroscopy, Fourier Transform Infrared , Textiles/analysis , Water Pollutants, Chemical/analysis
19.
Sci Total Environ ; 664: 1063-1083, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30901781

ABSTRACT

The polar bear (Ursus maritimus) is among the Arctic species exposed to the highest concentrations of long-range transported bioaccumulative contaminants, such as halogenated organic compounds and mercury. Contaminant exposure is considered to be one of the largest threats to polar bears after the loss of their Arctic sea ice habitat due to climate change. The aim of this review is to provide a comprehensive summary of current exposure, fate, and potential health effects of contaminants in polar bears from the circumpolar Arctic required by the Circumpolar Action Plan for polar bear conservation. Overall results suggest that legacy persistent organic pollutants (POPs) including polychlorinated biphenyls, chlordanes and perfluorooctane sulfonic acid (PFOS), followed by other perfluoroalkyl compounds (e.g. carboxylic acids, PFCAs) and brominated flame retardants, are still the main compounds in polar bears. Concentrations of several legacy POPs that have been banned for decades in most parts of the world have generally declined in polar bears. Current spatial trends of contaminants vary widely between compounds and recent studies suggest increased concentrations of both POPs and PFCAs in certain subpopulations. Correlative field studies, supported by in vitro studies, suggest that contaminant exposure disrupts circulating levels of thyroid hormones and lipid metabolism, and alters neurochemistry in polar bears. Additionally, field and in vitro studies and risk assessments indicate the potential for adverse impacts to polar bear immune functions from exposure to certain contaminants.


Subject(s)
Environmental Exposure , Environmental Pollutants/adverse effects , Ursidae/physiology , Animals , Arctic Regions , Environmental Monitoring
20.
Sci Total Environ ; 667: 638-647, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30833262

ABSTRACT

Eggs of snow buntings (Plectrophenax nivealis) were applied as a bio-indicator to examine differences in exposure to legacy persistent organic pollutants (POPs) and perflouroalkyl subtances (PFAS) from the terrestrial environment surrounding the settlements of Longyearbyen, Barentsburg and Pyramiden on Svalbard, Norway. Significantly higher concentrations of summed polychlorinated biphenyls (sumPCB7) in eggs collected from Barentsburg (2980 ng/g lipid weight (lw)) and Pyramiden (3860 ng/g lw) compared to Longyearbyen (96 ng/g lw) are attributed to local sources of PCBs within these settlements. Similar findings were observed for p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) where higher median concentrations observed in Pyramiden (173 ng/g lw) and Barentsburg (75 ng/g lw) compared to Longyearbyen (48 ng/g lw) may be influenced by guano inputs from breeding seabird populations, although other point sources cannot be ruled out. Concentrations of perfluorooctane sulphonate (PFOS) and several perfluorinated carboxylic acids (PFCAs) in snow bunting eggs were found to be statistically higher in the populated settlements of Longyearbyen and Barentsburg compared to the abandoned Pyramiden. Narrow foraging ranges of snow buntings during breeding season was useful in assessing point sources of exposure for PCBs and PFAS at particular sites with extreme differences observed between nest locations. SumPCB7 concentrations ranged from 2 µg/g ww to below detection limits between nest sites located less than a kilometer from each other in Pyramiden. Similar findings were observed in Longyearbyen, where several PFCAs ranged from 2 to 55 times higher between nest sites with similar spatial distances. These findings indicate that snow buntings can be a useful bio-indicator offering high spatial resolution for contaminant source apportionment in terrestrial environments on Svalbard.


Subject(s)
Environmental Monitoring/methods , Environmental Pollutants/metabolism , Passeriformes/metabolism , Alkanesulfonic Acids/metabolism , Animals , Arctic Regions , Dichlorodiphenyl Dichloroethylene/metabolism , Fluorocarbons/metabolism , Polychlorinated Biphenyls/metabolism , Svalbard
SELECTION OF CITATIONS
SEARCH DETAIL
...