Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 591(7851): 586-591, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33762767

ABSTRACT

Nanoparticle assembly has been proposed as an ideal means to program the hierarchical organization of a material by using a selection of nanoscale components to build the entire material from the bottom up. Multiscale structural control is highly desirable because chemical composition, nanoscale ordering, microstructure and macroscopic form all affect physical properties1,2. However, the chemical interactions that typically dictate nanoparticle ordering3-5 do not inherently provide any means to manipulate structure at larger length scales6-9. Nanoparticle-based materials development therefore requires processing strategies to tailor micro- and macrostructure without sacrificing their self-assembled nanoscale arrangements. Here we demonstrate methods to rapidly assemble gram-scale quantities of faceted nanoparticle superlattice crystallites that can be further shaped into macroscopic objects in a manner analogous to the sintering of bulk solids. The key advance of this method is that the chemical interactions that govern nanoparticle assembly remain active during the subsequent processing steps, which enables the local nanoscale ordering of the particles to be preserved as the macroscopic materials are formed. The nano- and microstructure of the bulk solids can be tuned as a function of the size, chemical makeup and crystallographic symmetry of the superlattice crystallites, and the micro- and macrostructures can be controlled via subsequent processing steps. This work therefore provides a versatile method to simultaneously control structural organization across the molecular to macroscopic length scales.

2.
Nano Lett ; 19(11): 8074-8081, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31602981

ABSTRACT

Hierarchical structural control across multiple size regimes requires careful consideration of the complex energy- and time-scales which govern the system's morphology at each of these different size ranges. At the nanoscale, synthetic chemistry techniques have been developed to create nanoparticles of well-controlled size and composition. At the macroscale, it is feasible to directly impose material structure via physical manipulation. However, in between these two size regimes at the mesoscale, structural control is more challenging as the physical forces that govern material assembly at larger and smaller scales begin to interfere with one another. In this work, the interplay of structure-directing forces at multiple length-scales is investigated by utilizing optical processing to influence both nanoscale and microscale features of self-assembled, DNA-grafted nanoparticle films. Optical processing is used to generate heat, which causes the self-assembled particles to rearrange from a kinetically trapped, amorphous state into a thermodynamically preferred superlattice structure. The gradient in the heat profile, however, also induces thermophoretic motion within the nanoparticle film, resulting in microscale movement at a comparable time-scale. By utilizing precise exposure times enabled by optical processing, crystallization and thermophoresis occur concurrently in the self-assembling nanoparticle system, enabling a dynamic growth mechanism whereby nucleation and growth occur in separate regions of the material. Furthermore, utilizing sufficiently short processing times allows for the formation of a fluidlike state of the DNA-functionalized nanoparticle materials that is inaccessible via typical thermal processing setups. This unique phase of the material allows for both pathway-dependent and pathway-independent growth phenomena, as appropriately tuning the experimental conditions enables the formation of morphologically equivalent nanoparticle lattices that are generated through different intermediate states (pathway-independent structures), or kinetically preprocessing a material to yield unique thermodynamic arrangements of particles once fully annealed (pathway-dependent structures).


Subject(s)
DNA/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Crystallization/instrumentation , Crystallization/methods , Lasers , Metal Nanoparticles/ultrastructure , Nanostructures/ultrastructure , Nanotechnology/instrumentation , Thermodynamics
3.
ACS Nano ; 13(7): 8452-8460, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31268681

ABSTRACT

DNA is a powerful tool in the directed assembly of nanoparticle based superlattice materials, as the predictable nature of Watson-Crick base pairing allows DNA-grafted particles to be programmably assembled into unit cells that arise from the complete control of nanoparticle coordination environment within the lattice. However, while the local environment around each nanoparticle within a superlattice can be precisely dictated, the same level of control over aspects of crystallite structure at the meso- or macroscale (e.g., lattice orientation) remains challenging. This study investigates the pathway through which DNA-functionalized nanoparticles bound to a DNA-functionalized substrate reorganize upon annealing to synthesize superlattice thin films with restricted orientation. Preferential alignment with the substrate occurs because of the energetic stabilization of specific lattice planes at the substrate interface, which drives the aligned grains to nucleate more readily and grow through absorption of surrounding grains. Crystal orientation during lattice reorganization is shown to be affected by film thickness, lattice symmetry, DNA sequence, and particle design. Importantly, judicious control over these factors allows for rational manipulation over crystalline texture in bulk films. Additionally, it is shown that this level of control enables a reduction in nanoscale symmetry of preferentially aligned crystallites bound to an interface through anisotropic thermal compression upon cooling. Ultimately, this investigation highlights the remarkable interplays between nanoscale building blocks and mesoscale orientation, and expands the structure-defining capabilities of DNA-grafted nanoparticles.


Subject(s)
DNA/chemistry , Nanoparticles/chemistry , Base Pairing , Crystallization , Particle Size , Surface Properties
4.
Small ; 15(26): e1805424, 2019 06.
Article in English | MEDLINE | ID: mdl-30970182

ABSTRACT

Decades of research efforts into atomic crystallization phenomenon have led to a comprehensive understanding of the pathways through which atoms form different crystal structures. With the onset of nanotechnology, methods that use colloidal nanoparticles (NPs) as nanoscale "artificial atoms" to generate hierarchically ordered materials are being developed as an alternative strategy for materials synthesis. However, the assembly mechanisms of NP-based crystals are not always as well-understood as their atomic counterparts. The creation of a tunable nanoscale synthon whose assembly can be explained using the context of extensively examined atomic crystallization will therefore provide significant advancement in nanomaterials synthesis. DNA-grafted NPs have emerged as a strong candidate for such a "programmable atom equivalent" (PAE), because the predictable nature of DNA base-pairing allows for complex yet easily controlled assembly. This Review highlights the characteristics of these PAEs that enable controlled assembly behaviors analogous to atomic phenomena, which allows for rational material design well beyond what can be achieved with other crystallization techniques.


Subject(s)
Colloids/chemistry , DNA/chemistry , Nanotechnology/methods , Crystallization , Nanoparticles/chemistry , Nanostructures/chemistry
5.
Langmuir ; 34(49): 14842-14850, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30169041

ABSTRACT

Particle assembly at interfaces via programmed DNA interactions allows for independent modification of both nanoparticle-surface interaction strength and the magnitude of interparticle repulsion. Together, these factors allow for modification of the deposited thin film morphology via alterations in DNA binding sequence. Importantly, both Langmuir and random sequential adsorption models yield insights into the thermodynamics of deposition but cannot fully explain particle coverage as a function of all relevant variables, indicating that the particle deposition mechanism for DNA-grafted colloids is more complex than prior adsorption phenomena. Here, it is shown that these deviations from standard behavior arise from the fact that each nanoparticle is attached to the surface via multiple weak DNA duplex interactions, enabling diffusion of adsorbed colloids across the substrate. Thus, surface migration of individual particles causes reorganization of the deposited monolayer, leading to the unusual behavior of coverage increasing at elevated temperatures that are just below the particle desorption temperature. The programmability of DNA-directed particle deposition therefore allows for precise control over the morphology of monolayer films, as well as the ability to generate crystalline materials with controllable surface roughness and grain size through layer-by-layer growth. The increased control over thin film morphology potentially enables tailoring of mechanical and optical properties and holds promise for use in a variety of applications.


Subject(s)
DNA/chemistry , Metal Nanoparticles/chemistry , Adsorption , Colloids , DNA/genetics , Gold/chemistry , Nucleic Acid Hybridization , Osmolar Concentration , Surface Properties , Temperature
6.
Nano Lett ; 18(1): 579-585, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29271207

ABSTRACT

For atomic thin films, lattice mismatch during heteroepitaxy leads to an accumulation of strain energy, generally causing the films to irreversibly deform and generate defects. In contrast, more elastically malleable building blocks should be better able to accommodate this mismatch and the resulting strain. Herein, that hypothesis is tested by utilizing DNA-modified nanoparticles as "soft," programmable atom equivalents to grow a heteroepitaxial colloidal thin film. Calculations of interaction potentials, small-angle X-ray scattering data, and electron microscopy images show that the oligomer corona surrounding a particle core can deform and rearrange to store elastic strain up to ±7.7% lattice mismatch, substantially exceeding the ±1% mismatch tolerated by atomic thin films. Importantly, these DNA-coated particles dissipate strain both elastically through a gradual and coherent relaxation/broadening of the mismatched lattice parameter and plastically (irreversibly) through the formation of dislocations or vacancies. These data also suggest that the DNA cannot be extended as readily as compressed, and thus the thin films exhibit distinctly different relaxation behavior in the positive and negative lattice mismatch regimes. These observations provide a more general understanding of how utilizing rigid building blocks coated with soft compressible polymeric materials can be used to control nano- and microstructure.

7.
ACS Nano ; 11(1): 180-185, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28114758

ABSTRACT

The programmability of DNA makes it an attractive structure-directing ligand for the assembly of nanoparticle (NP) superlattices in a manner that mimics many aspects of atomic crystallization. However, the synthesis of multilayer single crystals of defined size remains a challenge. Though previous studies considered lattice mismatch as the major limiting factor for multilayer assembly, thin film growth depends on many interlinked variables. Here, a more comprehensive approach is taken to study fundamental elements, such as the growth temperature and the thermodynamics of interfacial energetics, to achieve epitaxial growth of NP thin films. Both surface morphology and internal thin film structure are examined to provide an understanding of particle attachment and reorganization during growth. Under equilibrium conditions, single crystalline, multilayer thin films can be synthesized over 500 × 500 µm2 areas on lithographically patterned templates, whereas deposition under kinetic conditions leads to the rapid growth of glassy films. Importantly, these superlattices follow the same patterns of crystal growth demonstrated in atomic thin film deposition, allowing these processes to be understood in the context of well-studied atomic epitaxy and enabling a nanoscale model to study fundamental crystallization processes. Through understanding the role of epitaxy as a driving force for NP assembly, we are able to realize 3D architectures of arbitrary domain geometry and size.

8.
J Am Chem Soc ; 138(50): 16228-16231, 2016 12 21.
Article in English | MEDLINE | ID: mdl-27935680

ABSTRACT

The physical characteristics of composite materials are dictated by both the chemical composition and spatial configuration of each constituent phase. A major challenge in nanoparticle-based composites is developing methods to precisely dictate particle positions at the nanometer length scale, as this would allow complete control over nanocomposite structure-property relationships. In this work, we present a new class of building blocks called nanocomposite tectons (NCTs), which consist of inorganic nanoparticles grafted with a dense layer of polymer chains that terminate in molecular recognition units capable of programmed supramolecular bonding. By tuning various design factors, including the particle size and polymer length, we can use the supramolecular interactions between NCTs to controllably alter their assembly behavior, enabling the formation of well-ordered body-centered cubic superlattices consisting of inorganic nanoparticles surrounded by polymer chains. NCTs therefore present a modular platform that enables the construction of composite materials where the composition and three-dimensional arrangement of different constituents within the composite can be independently controlled.

SELECTION OF CITATIONS
SEARCH DETAIL
...