Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Artif Intell ; 7: 1371411, 2024.
Article in English | MEDLINE | ID: mdl-38845683

ABSTRACT

Introduction: Fine-grained, descriptive information on habitats and reproductive conditions of plant species are crucial in forest restoration and rehabilitation efforts. Precise timing of fruit collection and knowledge of species' habitat preferences and reproductive status are necessary especially for tropical plant species that have short-lived recalcitrant seeds, and those that exhibit complex reproductive patterns, e.g., species with supra-annual mass flowering events that may occur in irregular intervals. Understanding plant regeneration in the way of planning for effective reforestation can be aided by providing access to structured information, e.g., in knowledge bases, that spans years if not decades as well as covering a wide range of geographic locations. The content of such a resource can be enriched with literature-derived information on species' time-sensitive reproductive conditions and location-specific habitats. Methods: We sought to develop unsupervised approaches to extract relationships pertaining to habitats and their locations, and reproductive conditions of plant species and corresponding temporal information. Firstly, we handcrafted rules for a traditional rule-based pattern matching approach. We then developed a relation extraction approach building upon transformer models, i.e., the Text-to-Text Transfer Transformer (T5), casting the relation extraction problem as a question answering and natural language inference task. We then propose a novel unsupervised hybrid approach that combines our rule-based and transformer-based approaches. Results: Evaluation of our hybrid approach on an annotated corpus of biodiversity-focused documents demonstrated an improvement of up to 15 percentage points in recall and best performance over solely rule-based and transformer-based methods with F1-scores ranging from 89.61 to 96.75% for reproductive condition - temporal expression relations, and ranging from 85.39% to 89.90% for habitat - geographic location relations. Our work shows that even without training models on any domain-specific labeled dataset, we are able to extract relationships between biodiversity concepts from literature with satisfactory performance.

2.
Biodivers Data J ; (7): e29626, 2019.
Article in English | MEDLINE | ID: mdl-30700967

ABSTRACT

Background Species occurrence records are very important in the biodiversity domain. While several available corpora contain only annotations of species names or habitats and geographical locations, there is no consolidated corpus that covers all types of entities necessary for extracting species occurrence from biodiversity literature. In order to alleviate this issue, we have constructed the COPIOUS corpus-a gold standard corpus that covers a wide range of biodiversity entities. Results Two annotators manually annotated the corpus with five categories of entities, i.e. taxon names, geographical locations, habitats, temporal expressions and person names. The overall inter-annotator agreement on 200 doubly-annotated documents is approximately 81.86% F-score. Amongst the five categories, the agreement on habitat entities was the lowest, indicating that this type of entity is complex. The COPIOUS corpus consists of 668 documents downloaded from the Biodiversity Heritage Library with over 26K sentences and more than 28K entities. Named entity recognisers trained on the corpus could achieve an F-score of 74.58%. Moreover, in recognising taxon names, our model performed better than two available tools in the biodiversity domain, namely the SPECIES tagger and the Global Name Recognition and Discovery. More than 1,600 binary relations of Taxon-Habitat, Taxon-Person, Taxon-Geographical locations and Taxon-Temporal expressions were identified by applying a pattern-based relation extraction system to the gold standard. Based on the extracted relations, we can produce a knowledge repository of species occurrences. Conclusion The paper describes in detail the construction of a gold standard named entity corpus for the biodiversity domain. An investigation of the performance of named entity recognition (NER) tools trained on the gold standard revealed that the corpus is sufficiently reliable and sizeable for both training and evaluation purposes. The corpus can be further used for relation extraction to locate species occurrences in literature-a useful task for monitoring species distribution and preserving the biodiversity.

SELECTION OF CITATIONS
SEARCH DETAIL
...