Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 18157, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36307539

ABSTRACT

Vascular endothelial growth factor-C (VEGF-C) stimulates lymphatic vessel growth in transgenic models, via viral gene delivery, and as a recombinant protein. Expressing eukaryotic proteins like VEGF-C in bacterial cells has limitations, as these cells lack specific posttranslational modifications and provisions for disulfide bond formation. However, given the cost and time savings associated with bacterial expression systems, there is considerable value in expressing VEGF-C using bacterial cells. We identified two approaches that result in biologically active Escherichia coli-derived VEGF-C. Expectedly, VEGF-C expressed from a truncated cDNA became bioactive after in vitro folding from inclusion bodies. Given that VEGF-C is one of the cysteine-richest growth factors in humans, it was unclear whether known methods to facilitate correct cysteine bond formation allow for the direct expression of bioactive VEGF-C in the cytoplasm. By fusing VEGF-C to maltose-binding protein and expressing these fusions in the redox-modified cytoplasm of the Origami (DE3) strain, we could recover biological activity for deletion mutants lacking the propeptides of VEGF-C. This is the first report of a bioactive VEGF growth factor obtained from E. coli cells circumventing in-vitro folding.


Subject(s)
Escherichia coli , Vascular Endothelial Growth Factor C , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Cysteine/metabolism , Recombinant Proteins/metabolism , Maltose-Binding Proteins/metabolism
2.
PLoS One ; 12(12): e0189964, 2017.
Article in English | MEDLINE | ID: mdl-29253024

ABSTRACT

CyDisCo is a system facilitating disulfide bond formation in recombinant proteins in the cytoplasm of Escherichia coli. Previously we screened for soluble expression of single chain antibody fragments (scFv) in the cytoplasm of E. coli in the presence and absence of CyDisCo, with >90% being solubly expressed. Two scFv, those derived from natalizumab and trastuzumab, were solubly produced in high amounts even in the absence of folding catalysts i.e. disulfide bond formation is not critical for their folding. Here we investigate the contribution of the framework and the complementarity determining regions (CDRs) of scFv to the disulfide-independence of folding. We swapped CDRs between four scFv that have different properties, including two scFv that can efficiently fold independently from disulfide bonds and two more disulfide-dependent scFv. To confirm disulfide-independence we generated cysteine to alanine mutants of the disulfide-independent scFv. All of the scFv were tested for soluble expression in the cytoplasm of E. coli in the presence and absence of the oxidative folding catalysts Erv1p and PDI. Eight of the hybrid scFv were solubly produced in the presence of CyDisCo, while seven were solubly produced in the absence of CyDisCo, though the yields were often much lower when CyDisCo was absent. Soluble expression was also observed for scFv natalizumab and trastuzumab containing no cysteines. We compared yields, thermal stability and secondary structure of solubly produced scFv and undertook binding studies by western blotting, dot blotting or surface plasmon resonance of those produced in good yields. Our results indicate that both the CDRs and the framework contribute to the disulfide-dependence of soluble production of scFv, with the CDRs having the largest effect. In addition, there was no correlation between thermal stability and disulfide-dependence of folding and only a weak correlation between the yield of protein and the thermal stability of the protein.


Subject(s)
Complementarity Determining Regions/chemistry , Disulfides/chemistry , Recombinant Proteins/chemistry , Single-Chain Antibodies/chemistry , Alanine/genetics , Catalysis , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Kinetics , Mutation , Natalizumab/chemistry , Oxidation-Reduction , Oxygen/chemistry , Protein Folding , Trastuzumab/chemistry
3.
Microb Cell Fact ; 16(1): 108, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28619018

ABSTRACT

BACKGROUND: The production of recombinant proteins containing disulfide bonds in Escherichia coli is challenging. In most cases the protein of interest needs to be either targeted to the oxidizing periplasm or expressed in the cytoplasm in the form of inclusion bodies, then solubilized and re-folded in vitro. Both of these approaches have limitations. Previously we showed that soluble expression of disulfide bonded proteins in the cytoplasm of E. coli is possible at shake flask scale with a system, known as CyDisCo, which is based on co-expression of a protein of interest along with a sulfhydryl oxidase and a disulfide bond isomerase. With CyDisCo it is possible to produce disulfide bonded proteins in the presence of intact reducing pathways in the cytoplasm. RESULTS: Here we scaled up production of four disulfide bonded proteins to stirred tank bioreactors and achieved high cell densities and protein yields in glucose fed-batch fermentations, using an E. coli strain (BW25113) with the cytoplasmic reducing pathways intact. Even without process optimization production of purified human single chain IgA1 antibody fragment reached 139 mg/L and hen avidin 71 mg/L, while purified yields of human growth hormone 1 and interleukin 6 were around 1 g/L. Preliminary results show that human growth hormone 1 was also efficiently produced in fermentations of W3110 strain and when glucose was replaced with glycerol as the carbon source. CONCLUSIONS: Our results show for the first time that efficient production of high yields of soluble disulfide bonded proteins in the cytoplasm of E. coli with the reducing pathways intact is feasible to scale-up to bioreactor cultivations on chemically defined minimal media.


Subject(s)
Cytoplasm/chemistry , Disulfides/chemistry , Escherichia coli/genetics , Animals , Avidin/analysis , Avidin/biosynthesis , Avidin/genetics , Bioreactors , Chickens , Culture Media/chemistry , Cytoplasm/metabolism , Escherichia coli/chemistry , Escherichia coli/cytology , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Female , Fermentation , Glucose/metabolism , Glycerol/metabolism , Human Growth Hormone/biosynthesis , Human Growth Hormone/genetics , Humans , Immunoglobulin Fragments/biosynthesis , Immunoglobulin Fragments/genetics , Inclusion Bodies/chemistry , Inclusion Bodies/metabolism , Interleukin-6/biosynthesis , Interleukin-6/genetics , Oxidation-Reduction , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry
4.
Microb Cell Fact ; 15: 22, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26809624

ABSTRACT

BACKGROUND: Disulfide bonds are the most common structural, post-translational modification found in proteins. Antibodies contain up to 25 disulfide bonds depending on type, with scFv fragments containing two disulfides and Fab fragments containing five or six disulfide bonds. The production of antibody fragments that contain native disulfide bonds can be challenging, especially on a large scale. The protein needs to be targeted to prokaryotic periplasm or the eukaryotic endoplasmic reticulum. These compartments are specialised for disulfide bond formation, but both compartments have limitations. RESULTS: Here we show that the introduction into the cytoplasm of a catalyst of disulfide bond formation and a catalyst of disulfide bond isomerization allows the efficient formation of natively folded scFv and Fab antibody fragments in the cytoplasm of Escherichia coli with intact reducing pathways. Eleven scFv and eleven Fab fragments were screened and ten of each were obtained in yields of >5 mg/L from deep-well plates. Production of eight of the scFv and all ten of the Fab showed a strong dependence on the addition of the folding factors. Yields of purified scFv of up to 240 mg/L and yields of purified Fab fragments of up to 42 mg/L were obtained. Purified fragments showed circular dichroism spectra consistent with being natively folded and were biologically active. CONCLUSIONS: Our results show that the efficient production of soluble, biologically active scFv and Fab antibody fragments in the cytoplasm of E. coli is not only possible, but facile. The required components can be easily transferred between different E. coli strains.


Subject(s)
Cytoplasm/metabolism , Escherichia coli/metabolism , Immunoglobulin Fragments/metabolism , Protein Engineering/methods , Animals , Antibodies/isolation & purification , Genetic Vectors/metabolism , Humans , Immunoglobulin Fragments/isolation & purification , Mice , Molecular Weight , Plasmids/metabolism , Single-Chain Antibodies/metabolism , Solubility , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...