Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 89(3): 1438-1445, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38241605

ABSTRACT

A broad survey of heterogeneous hydrogenation catalysts has been conducted for the reduction of heterocycles commonly found in pharmaceuticals. The comparative reactivity of these substrates is reported as a function of catalyst, temperature, and hydrogen pressure. This analysis provided several catalysts with complementary reactivity between substrates. We then explored a series of bisheterocyclic substrates that provided an intramolecular competition of heterocycle hydrogenation reactivity. In several cases, complete selectivity could be achieved for reduction of one heterocycle and isolated yields are reported. A general trend in reactivity is inferred in which quinoline is the most reactive, followed by pyrazine, then pyrrole and with pyridine being the least reactive.

2.
J Org Chem ; 86(7): 5142-5151, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33755465

ABSTRACT

In the context of a PRMT5 inhibitor program, we describe our efforts to develop a flexible and robust strategy to access tetrahydrofuro[3,4-b]furan nucleoside analogues. Ultimately, it was found that a Wolfe type carboetherification from an alkenol derived from d-glucofuranose diacetonide was capable of furnishing the B-ring and installing the desired heteroaryl group in a single step. Using this approach, key intermediate 1.3-A was delivered on a gram scale in a 62% yield and 9.1:1 dr in favor of the desired S-isomer. After deprotection of 1.3-A, a late-stage glycosylation was performed under Mitsunobu conditions to install the pyrrolopyrimidine base. This provided serviceable yields of nucleoside analogues in the range of 31-48% yield. Compound 1.1-C was profiled in biochemical and cellular assays and was demonstrated to be a potent and cellularly active PRMT5 inhibitor, with a PRMT5-MEP50 biochemical IC50 of 0.8 nM, a MCF-7 target engagement EC50 of 3 nM, and a Z138 cell proliferation EC50 of 15 nM. This work sets the stage for the development of new inhibitors of PRMT5 and novel nucleoside chemical matter for alternate drug discovery programs.


Subject(s)
Nucleosides , Protein-Arginine N-Methyltransferases , Cell Proliferation , Enzyme Inhibitors , Furans
3.
Org Lett ; 10(11): 2307-10, 2008 Jun 05.
Article in English | MEDLINE | ID: mdl-18461954

ABSTRACT

Organocopper reagents smoothly react with heterocyclic propargyl mesylates at low temperature to produce N-fused heterocycles. The copper reagent plays a "double duty" in this novel cascade transformation, which proceeds via an SN2' substitution followed by a subsequent cycloisomerization step.


Subject(s)
Copper/chemistry , Heterocyclic Compounds/chemistry , Nitrogen/chemistry , Organometallic Compounds/chemistry , Temperature , Catalysis , Isomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...