Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 43(7): 994-1001, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25897175

ABSTRACT

Methadone is a long-acting opioid with considerable unexplained interindividual variability in clearance. Cytochrome P450 2B6 (CYP2B6) mediates clinical methadone clearance and metabolic inactivation via N-demethylation to 2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP). Retrospective studies suggest that individuals with the CYP2B6*6 allelic variant have higher methadone plasma concentrations. Catalytic activities of CYP2B6 variants are highly substrate- and expression-system dependent. This investigation evaluated methadone N-demethylation by expressed human CYP2B6 allelic variants in an insect cell coexpression system containing P450 reductase. Additionally, the influence of coexpressing cytochrome b5, whose role in metabolism can be inhibitory or stimulatory depending on the P450 isoform and substrate, on methadone metabolism, was evaluated. EDDP formation from therapeutic (0.25-1 µM) R- and S-methadone concentrations was CYP2B6.4 ≥ CYP2B6.1 ≥ CYP2B6.5 >> CYP2B6.9 ≈ CYP2B6.6, and undetectable from CYP2B6.18. Coexpression of b5 had small and variant-specific effects at therapeutic methadone concentrations but at higher concentrations stimulated EDDP formation by CYP2B6.1, CYP2B6.4, CYP2B6.5, and CYP2B6.9 but not CYP2B6.6. In vitro intrinsic clearances were generally CYP2B6.4 ≥ CYP2B6.1 > CYP2B6.5 > CYP2B6.9 ≥ CYP2B6.6. Stereoselective methadone metabolism (S>R) was maintained with all CYP2B6 variants. These results show that methadone N-demethylation by CYP2B6.4 is greater compared with CYP2B6.1, whereas CYP2B6.9 and CYP2B6.6 (which both contain the 516G>T, Q172H polymorphism), are catalytically deficient. The presence or absence of b5 in expression systems may explain previously reported disparate catalytic activities of CYP2B6 variants for specific substrates. Differences in methadone metabolism by CYP2B6 allelic variants provide a mechanistic understanding of pharmacogenetic variability in clinical methadone metabolism and clearance.


Subject(s)
Cytochrome P-450 CYP2B6/genetics , Cytochrome P-450 CYP2B6/metabolism , Methadone/pharmacokinetics , Narcotics/pharmacokinetics , Alleles , Animals , Cells, Cultured , Cytochromes b5/metabolism , Humans , Insecta , Isoenzymes/genetics , Isoenzymes/metabolism , Methylation , Plasmids/genetics , Recombinant Proteins/metabolism , Spodoptera/metabolism , Stereoisomerism
2.
Biochem Pharmacol ; 95(2): 115-25, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25801005

ABSTRACT

Drug interactions involving methadone and/or HIV antiretrovirals can be problematic. Mechanisms whereby antiretrovirals induce clinical methadone clearance are poorly understood. Methadone is N-demethylated to 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) by CYP2B6 and CYP3A4 in vitro, but by CYP2B6 in vivo. This investigation evaluated human hepatocytes as a model for methadone induction, and tested the hypothesis that methadone and EDDP are substrates for human drug transporters. Human hepatocyte induction by several antiretrovirals of methadone N-demethylation, and CYP2B6 and CYP3A4 transcription, protein expression and catalytic activity, and pregnane X receptor (PXR) activation were evaluated. Methadone and EDDP uptake and efflux by overexpressed transporters were also determined. Methadone N-demethylation was generally not significantly increased by the antiretrovirals. CYP2B6 mRNA and activity (bupropion N-demethylation) were induced by several antiretrovirals, as were CYP3A4 mRNA and protein expression, but only indinavir increased CYP3A activity (alfentanil dealkylation). CYP upregulation appeared related to PXR activation. Methadone was not a substrate for uptake (OCT1, OCT2, OCT3, OATP1A2, OATP1B1, OATP1B3, OATP2B1) or efflux (P-gp, BCRP) transporters. EDDP was a good substrate for P-gp, BCRP, OCT1, OCT3, OATP1A2, and OATP1B1. OATP1A2- and OCT3-mediated EDDP uptake, and BCRP-mediated EDDP efflux transport, was inhibited by several antiretrovirals. Results show that hepatocyte methadone N-demethylation resembles expressed and liver microsomal metabolism more than clinical metabolism. Compared with clinical studies, hepatocytes underreport induction of methadone metabolism by HIV drugs. Hepatocytes are not a good predictive model for clinical antiretroviral induction of methadone metabolism and not a substitute for clinical studies. EDDP is a transporter substrate, and is susceptible to transporter-mediated interactions.


Subject(s)
Anti-HIV Agents/pharmacology , Methadone/pharmacokinetics , Biological Transport , Cell Line , Drug Interactions , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Methylation , Opiate Substitution Treatment
3.
Drug Metab Dispos ; 41(4): 709-13, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23298862

ABSTRACT

The long-acting opioid methadone displays considerable unexplained interindividual pharmacokinetic variability. Methadone metabolism clinically occurs primarily by N-demethylation to 2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), catalyzed predominantly by CYP2B6. Retrospective studies suggest that the common allele variant CYP2B6*6 may influence methadone plasma concentrations. The catalytic activity of CYP2B6.6, encoded by CYP2B6*6, is highly substrate-dependent. This investigation compared methadone N-demethylation by CYP2B6.6 with that by wild-type CYP2B6.1. Methadone enantiomer and racemate N-demethylation by recombinant-expressed CYP2B6.6 and CYP2B6.1 was determined. At substrate concentrations (0.25-2 µM) approximating plasma concentrations occurring clinically, rates of methadone enantiomer N-demethylation by CYP2B6.6, incubated individually or as the racemate, were one-third to one-fourth those by CYP2B6.1. For methadone individual enantiomers and metabolism by CYP2B6.6 compared with CYP2B6.1, Vmax was diminished, Ks was greater and the in vitro intrinsic clearance was diminished 5- to 6-fold. The intrinsic clearance for R- and S-EDDP formation from racemic methadone was diminished approximately 6-fold and 3-fold for R- and S-methadone, respectively. Both CYP2B6.6 and CYP2B6.1 showed similar stereoselectivity (S>R-methadone). Human liver microsomes with diminished CYP2B6 content due to a CYP2B6*6 allele had lower rates of methadone N-demethylation. Results show that methadone N-demethylation catalyzed by CYP2B6.6, the CYP2B6 variant encoded by the CYP2B6*6 polymorphism, is catalytically deficient compared with wild-type CYP2B6.1. Diminished methadone N-demethylation by CYP2B6.6 may provide a mechanistic explanation for clinical observations of altered methadone disposition in individuals carrying the CYP2B6*6 polymorphism.


Subject(s)
Aryl Hydrocarbon Hydroxylases/genetics , Aryl Hydrocarbon Hydroxylases/metabolism , Methadone/pharmacokinetics , Oxidoreductases, N-Demethylating/genetics , Oxidoreductases, N-Demethylating/metabolism , Alleles , Cytochrome P-450 CYP2B6 , Humans , In Vitro Techniques , Isoenzymes/metabolism , Microsomes, Liver/metabolism , Stereoisomerism
4.
Nat Struct Mol Biol ; 18(1): 91-3, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21131980

ABSTRACT

We have tested the specificity and utility of more than 200 antibodies raised against 57 different histone modifications in Drosophila melanogaster, Caenorhabditis elegans and human cells. Although most antibodies performed well, more than 25% failed specificity tests by dot blot or western blot. Among specific antibodies, more than 20% failed in chromatin immunoprecipitation experiments. We advise rigorous testing of histone-modification antibodies before use, and we provide a website for posting new test results (http://compbio.med.harvard.edu/antibodies/).


Subject(s)
Antibody Specificity , Histones/immunology , Animals , Antibodies/chemistry , Blotting, Western , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/chemistry , Chromatin Immunoprecipitation , Drosophila Proteins/chemistry , Drosophila melanogaster/genetics , Histones/chemistry , Histones/metabolism , Immunoblotting , Protein Processing, Post-Translational , Quality Control , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...