Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(10): 15788-15808, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38305978

ABSTRACT

This study attempts to examine the morphological, elemental and physical characteristics of PM10 over the Indian Himalayan Region (IHR) using FTIR and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis. The study aimed at source identification of PM10 by exploring the inorganic ions, organic functional groups, morphology and elemental characteristics. The pollution load of PM10 was estimated as 63 ± 22 µg m-3; 53 ± 16 µg m-3; 67 ± 26 µg m-3 and 55 ± 11 µg m-3 over Mohal-Kullu, Almora, Nainital and Darjeeling, respectively. ATR-FTIR spectrum analysis revealed the existence of inorganic ions (SiO44-, TiO2, SO42-, SO3-, NO3-, NO2-, CO32-, HCO3-, NH4+) and organic functional groups (C-C, C-H, C=C, C≡C, C=O, N-H, C≡N, C=N, O-H, cyclic rings, aromatic compounds and some heterogeneous groups) in PM10 which may arise from geogenic, biogenic and anthropogenic sources. The morphological and elemental characterization was performed by SEM-EDX, inferring for geogenic origin (Al, Na, K, Ca, Mg and Fe) due to the presence of different morphologies (irregular, spherical, cluster, sheet-like solid deposition and columnar). In contrast, particles having biogenic and anthropogenic origins (K, S and Ba) have primarily spherical with few irregular particles at all the study sites. Also, the statistical analysis ANOVA depicts that among all the detected elements, Na, Al, Si, S and K are site-specific in nature as their mean of aw% significantly varied for all the sites. The trajectory analysis revealed that the Uttarakhand, Jammu and Kashmir, the Thar Desert, Himachal Pradesh, Pakistan, Afghanistan, Nepal, Sikkim, the Indo-Gangetic Plain (IGP) and the Bay of Bengal (BoB) contribute to the increased loading of atmospheric pollutants in various locations within the IHR.


Subject(s)
Air Pollutants , Particulate Matter , Particulate Matter/analysis , Air Pollutants/analysis , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Seasons , Environmental Monitoring , India , Aerosols/analysis , Ions
2.
Environ Monit Assess ; 196(2): 163, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231424

ABSTRACT

The present study frames the physico-chemical characteristics and the source apportionment of PM10 over National Capital Region (NCR) of India using the receptor model's Positive Matrix Factorization (PMF) and Principal Momponent Mnalysis/Absolute Principal Component Score-Multilinear Regression (PCA/APCS-MLR). The annual average mass concentration of PM10 over the urban site of Faridabad, IGDTUW-Delhi and CSIR-NPL of NCR-Delhi were observed to be 195 ± 121, 275 ± 141 and 209 ± 81 µg m-3, respectively. Carbonaceous species (organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon (WSOC)), elemental constituents (Al, Ti, Na, Mg, Cr, Mn, Fe, Cu, Zn, Br, Ba, Mo Pb) and water-soluble ionic components (F-, Cl-, SO42-, NO3-, NH4+, Na+, K+, Mg2+, Ca2+) of PM10 were entrenched to the receptor models to comprehend the possible sources of PM10. The PMF assorted sources over Faridabad were soil dust (SD 15%), industrial emission (IE 14%), vehicular emission (VE 19%), secondary aerosol (SA 23%) and sodium magnesium salt (SMS 17%). For IGDTUW-Delhi, the sources were SD (16%), VE (19%), SMS (18%), IE (11%), SA (27%) and VE + IE (9%). Emission sources like SD (24%), IE (8%), SMS (20%), VE + IE (12%), VE (15%) and SA + BB (21%) were extracted over CSIR-NPL, New Delhi, which are quite obvious towards the sites. PCA/APCS-MLR quantified the similar sources with varied percentage contribution. Additionally, catalogue the Conditional Bivariate Probability Function (CBPF) for directionality of the local source regions and morphology as spherical, flocculent and irregular were imaged using a Field Emission-Scanning Electron Microscope (FE-SEM).


Subject(s)
Carbon , Environmental Monitoring , India , Dust , Water
3.
Crit Rev Anal Chem ; : 1-27, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37934616

ABSTRACT

This review summarizes (i) compositions and types of improvised explosive devices; (ii) the process of collection, extraction and analysis of explosive evidence encountered in explosive and related cases; (iii) inter-comparison of analytical techniques; (iv) the challenges and prospects of explosive detection technology. The highlights of this study include extensive information regarding the National & International standards specified by USEPA, ASTM, and so on, for explosives detection. The holistic development of analytical tools for explosive analysis ranging from conventional methods to advanced analytical tools is also covered in this article. The most important aspect of this review is to make forensic scientists familiar with the challenges during explosive analysis and the steps to avoid them. The problems during analysis can be analyte-based, that is, interferences due to matrix or added molding/stabilizing agents, trace amount of parent explosives in post-blast samples and many more. Others are techniques-based challenges viz. specificity, selectivity, and sensitivity of the technique. Thus, it has become a primary concern to adopt rapid, field deployable, and highly sensitive techniques.

4.
Environ Sci Technol Lett ; 10(6): 520-527, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37333938

ABSTRACT

Delhi, India, suffers from periods of very poor air quality, but little is known about the chemical production of secondary pollutants in this highly polluted environment. During the postmonsoon period in 2018, extremely high nighttime concentrations of NOx (NO and NO2) and volatile organic compounds (VOCs) were observed, with median NOx mixing ratios of ∼200 ppbV (maximum of ∼700 ppbV). A detailed chemical box model constrained to a comprehensive suite of speciated VOC and NOx measurements revealed very low nighttime concentrations of oxidants, NO3, O3, and OH, driven by high nighttime NO concentrations. This results in an atypical NO3 diel profile, not previously reported in other highly polluted urban environments, significantly perturbing nighttime radical oxidation chemistry. Low concentrations of oxidants and high nocturnal primary emissions coupled with a shallow boundary layer led to enhanced early morning photo-oxidation chemistry. This results in a temporal shift in peak O3 concentrations when compared to the premonsoon period (12:00 and 15:00 local time, respectively). This shift will likely have important implications on local air quality, and effective urban air quality management should consider the impacts of nighttime emission sources during the postmonsoon period.

5.
Chemosphere ; 323: 138204, 2023 May.
Article in English | MEDLINE | ID: mdl-36828107

ABSTRACT

The development-oriented anthropogenic activities have led to intensive increase in emission of various organic pollutants, which contribute considerably to human health risk. In the present study, chemical, physical and spectral characterisation of fine particulate matter (PM2.5), collected at Faridabad city, in northern India, were examined. Seasonal variation of organic compounds [n-alkanes, polyaromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs)], and potential health risk of Polyaromatic hydrocarbons (PAHs) exposure using toxic equivalency potential (TEQ) approach had been assessed. These showed seasonal average values ranging from 156.4 ± 57.0 ng/m3 to 217.6 ± 72.9 ng/m3, 98.0 ± 21.4 ng/m3 to 177.8 ± 72.8 ng/m3, and 30.9 ± 11.9 ng/m3 to 82.5 ± 29.2 ng/m3, respectively, with the highest value for winter. It is noteworthy that unlike, n-alkanes and PAEs, PAHs were least during spring. The high molecular weight PAHs (BaP, BkF, DahA and IcdP) were found to exhibit higher TEQ values (ranging from 0.7 to 9.7) despite of their lower concentrations. The PAH diagnostic ratio, carbon preference index and total index revealed the enhanced impact of biogenic sources of emissions in comparison to diesel emission sources during winter.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Humans , Air Pollutants/analysis , Seasons , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Particulate Matter/analysis , India , Alkanes , China
6.
Environ Sci Pollut Res Int ; 29(12): 17892-17918, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34686959

ABSTRACT

In the present study, total suspended particulate matter (TSP) samples were collected at 47 different sites (47 grids of 5 × 5 km2 area) of Delhi during winter (January-February 2019) in campaign mode. To understand the spatial variation of sources, TSP samples were analyzed for chemical compositions including carbonaceous species [organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC)], water-soluble total nitrogen (WSTN), water-soluble inorganic nitrogen (WSIN), polycyclic aromatic hydrocarbons (16 PAHs), water-soluble inorganic species (WSIS) (F-, Cl-, SO42-, NO2-, NO3-, PO43-, NH4+, Ca2+, Mg2+, Na+, and K+), and major and minor trace elements (B, Na, Mg, Al, P, S, Cl, K, Ca, Ti, Fe, Zn, Cr, Mn, Cu, As, Pd, F, and Ag). During the campaign, the maximum concentration of several components of TSP (996 µg/m3) was recorded at the Rana Pratap Bagh area, representing a pollution hotspot of Delhi. The maximum concentrations of PAHs were recorded at Udhyog Nagar, a region close to heavily loaded diesel vehicles, small rubber factories, and waste burning areas. Higher content of Cl- and Cl-/Na+ ratio (>1.7) suggests the presence of nonmarine anthropogenic sources of Cl- over Delhi. Minimum concentrations of OC, EC, WSOC, PAHs, and WSIS in TSP were observed at Kalkaji, representing the least polluted area in Delhi. Enrichment factor <5.0 at several locations and a significant correlation of Al with Mg, Fe, Ti, and Ca and C/N ratio indicated the abundance of mineral/crustal dust in TSP over Delhi. Principal component analysis (PCA) was also performed for the source apportionment of TSP, and extracted soil dust was found to be the major contributor to TSP, followed by biomass burning, open waste burning, secondary aerosol, and vehicular emissions.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring , India , Particle Size , Particulate Matter/analysis , Seasons , Vehicle Emissions/analysis
7.
Faraday Discuss ; 226: 409-431, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33336656

ABSTRACT

Rapid economic growth and development have exacerbated air quality problems across India, driven by many poorly understood pollution sources and understanding their relative importance remains critical to characterising the key drivers of air pollution. A comprehensive suite of measurements of 90 non-methane hydrocarbons (NMHCs) (C2-C14), including 12 speciated monoterpenes and higher molecular weight monoaromatics, were made at an urban site in Old Delhi during the pre-monsoon (28-May to 05-Jun 2018) and post-monsoon (11 to 27-Oct 2018) seasons using dual-channel gas chromatography (DC-GC-FID) and two-dimensional gas chromatography (GC×GC-FID). Significantly higher mixing ratios of NMHCs were measured during the post-monsoon campaign, with a mean night-time enhancement of around 6. Like with NOx and CO, strong diurnal profiles were observed for all NMHCs, except isoprene, with very high NMHC mixing ratios between 35-1485 ppbv. The sum of mixing ratios of benzene, toluene, ethylbenzene and xylenes (BTEX) routinely exceeded 100 ppbv at night during the post-monsoon period, with a maximum measured mixing ratio of monoaromatic species of 370 ppbv. The mixing ratio of highly reactive monoterpenes peaked at around 6 ppbv in the post-monsoon campaign and correlated strongly with anthropogenic NMHCs, suggesting a strong non-biogenic source in Delhi. A detailed source apportionment study was conducted which included regression analysis to CO, acetylene and other NMHCs, hierarchical cluster analysis, EPA UNMIX 6.0, principal component analysis/absolute principal component scores (PCA/APCS) and comparison with NMHC ratios (benzene/toluene and i-/n-pentane) in ambient samples to liquid and solid fuels. These analyses suggested the primary source of anthropogenic NMHCs in Delhi was from traffic emissions (petrol and diesel), with average mixing ratio contributions from Unmix and PCA/APCS models of 38% from petrol, 14% from diesel and 32% from liquified petroleum gas (LPG) with a smaller contribution (16%) from solid fuel combustion. Detailed consideration of the underlying meteorology during the campaigns showed that the extreme night-time mixing ratios of NMHCs during the post-monsoon campaign were the result of emissions into a very shallow and stagnant boundary layer. The results of this study suggest that despite widespread open burning in India, traffic-related petrol and diesel emissions remain the key drivers of gas-phase urban air pollution in Delhi.

8.
Faraday Discuss ; 226: 502-514, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33244555

ABSTRACT

Surface ozone is a major pollutant threatening public health, agricultural production and natural ecosystems. While measures to improve air quality in megacities such as Delhi are typically aimed at reducing levels of particulate matter (PM), ozone could become a greater threat if these measures focus on PM alone, as some air pollution mitigation steps can actually lead to an increase in surface ozone. A better understanding of the factors controlling ozone production in Delhi and the impact that PM mitigation measures have on ozone is therefore critical for improving air quality. Here, we combine in situ observations and model analysis to investigate the impact of PM reduction on the non-linear relationship between volatile organic compounds (VOC), nitrogen oxides (NOx) and ozone. In situ measurements of NOx, VOC, and ozone were conducted in Delhi during the APHH-India programme in summer (June) and winter (November) 2018. We observed hourly averaged ozone concentrations in the city of up to 100 ppbv in both seasons. We performed sensitivity simulations with a chemical box model to explore the impacts of PM on the non-linear VOC-NOx-ozone relationship in each season through its effect on aerosol optical depth (AOD). We find that ozone production is limited by VOC in both seasons, and is particularly sensitive to solar radiation in winter. Reducing NOx alone increases ozone, such that a 50% reduction in NOx emissions leads to 10-50% increase in surface ozone. In contrast, reducing VOC emissions can reduce ozone efficiently, such that a 50% reduction in VOC emissions leads to ∼60% reduction in ozone. Reducing PM alone also increases ozone, especially in winter, by reducing its dimming effects on photolysis, such that a 50% reduction in AOD can increase ozone by 25% and it also enhances VOC-limitation. Our results highlight the importance of reducing VOC emissions alongside PM to limit ozone pollution, as well as benefitting control of PM pollution through reducing secondary organic aerosol. This will greatly benefit the health of citizens and the local ecosystem in Delhi, and could have broader application for other megacities characterized by severe PM pollution and VOC-limited ozone production.

9.
Chemosphere ; 237: 124500, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31549639

ABSTRACT

Deteriorating air quality with high levels of fine particulate matter (PM2.5) over National Capital Region (NCR) of India is one of the serious environmental and scientific issues. In this paper, PM2.5 samples were collected for 24 h twice or thrice a week during December 2016-December 2017 at three sites [Delhi (IG), Modinagar (MN) and Mahendragarh (HR)] over NCR to analyse the carbonaceous aerosols. Source apportionment of PM2.5 was attempted using Principal Component analysis (PCA) and Positive Matrix Factorization (PMF) based on the analysed carbonaceous fractions [Organic carbon, Elemental carbon, Secondary organic carbon (SOC)]. Organic compounds: alkanes, hopanes, steranes, polycyclic aromatic hydrocarbons (PAHs), phthalates, levoglucosan and n-alkanoic acids were analysed to distinguish the emission sources. Total Carbonaceous Aerosols (TCA) contributed significantly (∼26%) to PM2.5 which revealed their importance in source apportionment. Estimated SOC contributed 43.2%, 42.2% and 58.2% to OC and 5.4%, 5.3% and 7.8% to PM2.5 at IG, MN and HR sites respectively. PCA and PMF apportion five emission sources i.e., vehicular emissions (34.6%), biomass burning (26.8%), cooking emissions (15.7%), plastic and waste burning (13.5%) and secondary organic carbon (9.5%) for PM2.5. Source attributed health risk has also been calculated in terms of Lung cancer risk (LCR) associated with PAHs exposure and concluded that vehicular emissions (40.3%), biomass burning (38.1%), secondary organic carbon (12.8%) contributed higher to LCR (503.2 × 10-5; ∼503 cases in 1,00,000). Health risk assessment combined with source apportionment inferences signifies the immediate implementation of emissions reduction strategies with special target on transport sector and biomass burning over the NCR of India.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring , Air Pollution/analysis , Biomass , Carbon/analysis , Health , India , Organic Chemicals/analysis , Particulate Matter/analysis , Phthalic Acids , Polycyclic Aromatic Hydrocarbons/analysis , Seasons , Vehicle Emissions/analysis
10.
Chemosphere ; 221: 583-596, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30665088

ABSTRACT

Fine ambient aerosols (PM2.5) levels in the atmosphere are continuously worsening over Delhi and National Capital Region (NCR) of India. Complete source profiles are required to be assessed for implementation of proper mitigation measures over the NCR. In this study, emission sources of PM2.5 are reported for the NCR of India for samples collected during December 2016 to December 2017 at three sampling sites in Delhi, Uttar Pradesh and Haryana. Organic constituents (n-alkanes, isoprenoid hydrocarbons, polycyclic aromatic hydrocarbons, phthalates, levoglucosan and n-alkanoic acids) in PM2.5 were measured to apportion the sources over the study area. Source apportionment of PM2.5 was performed using organic constituents by Positive Matrix Factorization (PMF) and Principal Component Analysis (PCA). Health risk associated with organic pollutants [PAHs and carcinogen BEHP bis(2-ethylhexyl) phthalate] demonstrated the threat of PM2.5 exposure via inhalation. Transport pathways of air masses were evaluated using 3-day backward trajectories and observed that some air masses originated from local sources along with long-range transport which influenced the PAHs concentration during most of the study period over the NCR. PMF and PCA resulted in the five major emission sources [vehicular emissions (32.2%), biomass burning (30%), cooking emissions (16.8%), plastic burning (13.4%), mixed sources (7.6%) including biogenic and industrial emissions] for PM2.5 over the sampling sites. The present study reveals that transport sector is a major source to be targeted to reduce the vehicular emissions and consequent health risks associated with organic pollutants especially PAHs.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Particulate Matter/analysis , Risk Assessment , Environmental Monitoring/methods , Humans , India , Organic Chemicals/analysis , Vehicle Emissions/analysis
11.
J Environ Manage ; 232: 803-817, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30529868

ABSTRACT

The exponential increment in world population, recent industrialization, civilization, agricultural and household activities leads to greater levels of water pollution in terms of organic and inorganic contaminants. However, numerous workers have done research for the removal of these pollutants and various types of clays and/or modified clays have been extensively used for this purpose. But all identified adsorbent materials are not able to remove pollutants after certain concentration and sometimes these contaminants are left as such in environment which may create other environmental issues. This paper presents comprehensive information for the adsorption of heavy metal ions from water and waste water using various nanostructured adsorbents such as different clay minerals (kaolinite, montmorillonite) and clay (bentonite), carbon nanotube and nanocomposites. In addition to this, the efficiency of developed materials for the removal of heavy metals is also discussed in details along with comparison of their adsorption efficiencies, pH and change in specific surface area, initial metal ion concentration and contact time. This paper also states the future directions which could be followed to challenge the situation of removal of traces of heavy metals from water, hence protecting water bodies from high pollution load.


Subject(s)
Metals, Heavy , Nanocomposites , Water Pollutants, Chemical , Water Purification , Adsorption , Bentonite , Clay , Humans , Water
12.
Environ Sci Pollut Res Int ; 25(31): 31071-31090, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30187408

ABSTRACT

The study presents the spatial and temporal variation of fine ambient aerosols (PM2.5) over National Capital Region (NCR), India, during January to June 2016. The investigation includes three sampling sites, one in Delhi and two in the adjoining states of Delhi (Uttar Pradesh and Haryana), across NCR, India. The average PM2.5 concentration was highest for Delhi (128.5 ± 51.5 µg m-3) and lowest for Mahendragarh, Haryana (74.5 ± 28.7 µg m-3), during the study period. Seasonal variation was similar for all the sites with highest concentration during winter and lowest in summer. PM2.5 samples were analysed for organic compounds using gas chromatograph (GC). The concentration of three organic compound classes, n-alkanes (C11-C35), polycyclic aromatic hydrocarbons (PAHs), and phthalates, present in PM2.5 samples has been reported. Diagnostic ratios for n-alkanes demonstrated that biogenic emissions were dominant over Mahendragarh while major contributions were observed from petrogenic emissions over Delhi and Modinagar, Uttar Pradesh. Molecular diagnostic ratios were calculated to distinguish between different sources of PAHs, which revealed that the fossil fuel combustion (diesel and gasoline emissions), traffic emissions, and biomass burning are the major source contributors. Health risk associated with human exposure of phthalates and PAHs was also assessed as daily intake (DI, ng kg-1 day-1) and lung cancer risk, respectively. Backward trajectory analysis explained the local, regional, and long-range transport routes of PM2.5 for all sites. Principal component analysis (PCA) results summarized that the vehicular emissions, biomass burning, and plastic burning were the major sources of the PAHs and phthalates over the sampling sites.


Subject(s)
Air Pollutants/analysis , Hydrocarbons/analysis , Particulate Matter/analysis , Phthalic Acids/analysis , Aerosols , Biomass , Environmental Monitoring , Fossil Fuels , India , Seasons , Vehicle Emissions
13.
Bull Environ Contam Toxicol ; 101(2): 153-159, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29700580

ABSTRACT

Phthalic acid esters (PAEs) are a group of chemical species, ubiquitously present in the environment and pose a serious risk to humans. In the present study, the average concentrations of PAEs in PM10 (particulate matter ≤ 10 µm) are reported at a densely populated site in Delhi. The average concentration of PAEs was reported to be 703.1 ± 36.2 ng m-3 with slightly higher concentrations in winter than in summer; suggesting that sources are relatively stable over the whole year. The average concentration of PAEs was 35.7 ± 30.5 ng m-3 in winter, 35.4 ± 27.0 ng m-3 in summer, 3.4 ± 1.5 ng m-3 in monsoon and 7.5 ± 5.2 ng m-3 in post-monsoon. Principal component analysis was performed, which suggested that emissions were mainly due to plasticizers, cosmetics and personal care products, municipal solid waste, thermal power stations, industrial wastewater, cement plants and coke ovens.


Subject(s)
Air Pollutants/analysis , Particulate Matter/analysis , Phthalic Acids/analysis , Cosmetics , Environmental Monitoring , Esters , India , Industrial Waste , Plasticizers , Seasons , Solid Waste , Wastewater
14.
Environ Monit Assess ; 189(1): 43, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28039660

ABSTRACT

Delhi is one of the most polluted cities in the world. The generation of aerosols in the lower atmosphere of the city is mainly due to a large amount of natural dust advection and sizable anthropogenic activities. The compositions of organic compounds in aerosols are highly variable in this region and need to be investigated thoroughly. Twenty-four-hour sampling to assess concentrations of n-alkanes (ng/m3) in PM10 was carried out during January 2015 to June 2015 at Indira Gandhi Delhi Technical University for Women (IGDTUW) Campus, Delhi, India. The total average concentration of n-alkanes, 243.7 ± 5.5 ng/m3, along with the diagnostic tools has been calculated. The values of CPI1, CPI2, and CPI3 for the whole range of n-alkanes series, petrogenic n-alkanes, and biogenic n-alkanes were 1.00, 1.02, and 1.04, respectively, and C max were at C25 and C27. Diagnostic indices and curves indicated that the dominant inputs of n-alkanes are from petrogenic emissions, with lower contribution from biogenic emissions. Significant seasonal variations were observed in average concentrations of n-alkanes, which is comparatively higher in winter (187.4 ± 4.3 ng/m3) than during the summer season (56.3 ± 1.1 ng/m3).


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Particulate Matter/analysis , Seasons , Vehicle Emissions/analysis , Alkanes/analysis , Atmosphere , Cities , India , Organic Chemicals/analysis
15.
Environ Monit Assess ; 169(1-4): 1-13, 2010 Oct.
Article in English | MEDLINE | ID: mdl-19757121

ABSTRACT

The variation in air quality was assessed from the ambient concentrations of various air pollutants [total suspended particle (TSP), particulate matter < or =10 microm (PM(10)), SO(2), and NO(2)] for pre-Diwali, Diwali festival, post-Diwali, and foggy day (October, November, and December), Delhi (India), from 2002 to 2007. The extensive use of fireworks was found to be related to short-term variation in air quality. During the festival, TSP is almost of the same order as compared to the concentration at an industrial site in Delhi in all the years. However, the concentrations of PM(10), SO(2), and NO(2) increased two to six times during the Diwali period when compared to the data reported for an industrial site. Similar trend was observed when the concentrations of pollutants were compared with values obtained for a typical foggy day each year in December. The levels of these pollutants observed during Diwali were found to be higher due to adverse meteorological conditions, i.e., decrease in 24 h average mixing height, temperature, and wind speed. The trend analysis shows that TSP, PM(10), NO(2), and SO(2) concentration increased just before Diwali and reached to a maximum concentration on the day of the festival. The values gradually decreased after the festival. On Diwali day, 24-h values for TSP and PM(10) in all the years from 2002 to 2007 and for NO(2) in 2004 and 2007 were found to be higher than prescribed limits of National Ambient Air Quality Standards and exceptionally high (3.6 times) for PM(10) in 2007. These results indicate that fireworks during the Diwali festival affected the ambient air quality adversely due to emission and accumulation of TSP, PM(10), SO(2), and NO(2).


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Sulfur Dioxide/analysis , Air Pollution/statistics & numerical data , Atmosphere/chemistry , Holidays , Humans , India , Inhalation Exposure/analysis , Inhalation Exposure/statistics & numerical data , Time , Weather
16.
Crit Rev Biotechnol ; 29(4): 307-12, 2009.
Article in English | MEDLINE | ID: mdl-19929320

ABSTRACT

Heavy metals are found in their different forms in the environment. The distribution, mobility, and toxicity of metals are strongly related to these different forms. This necessitates the exploration of different methods for the remediation and speciation of heavy metals. Some direct and indirect physico-chemical methods such as filtration, chemical precipitation, ion-exchange, electro deposition, and membrane systems have been used for the last four decades. However, it is only in last few years that reliable biological methods have also been used. The biological methods include the use of microorganisms (fungi, algae, bacteria), plants (live or dead) and biopolymers. The use of these methods for the speciation of heavy metals is reviewed here.


Subject(s)
Biotechnology/methods , Metals, Heavy/analysis , Biotechnology/economics , Environmental Pollutants/analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...