Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(11): e61, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37014016

ABSTRACT

Deep parallel sequencing (NGS) is a viable tool for monitoring scFv and Fab library dynamics in many antibody engineering high-throughput screening efforts. Although very useful, the commonly used Illumina NGS platform cannot handle the entire sequence of scFv or Fab in a single read, usually focusing on specific CDRs or resorting to sequencing VH and VL variable domains separately, thus limiting its utility in comprehensive monitoring of selection dynamics. Here we present a simple and robust method for deep sequencing repertoires of full length scFv, Fab and Fv antibody sequences. This process utilizes standard molecular procedures and unique molecular identifiers (UMI) to pair separately sequenced VH and VL. We show that UMI assisted VH-VL matching allows for a comprehensive and highly accurate mapping of full length Fv clonal dynamics in large highly homologous antibody libraries, as well as identification of rare variants. In addition to its utility in synthetic antibody discovery processes, our method can be instrumental in generating large datasets for machine learning (ML) applications, which in the field of antibody engineering has been hampered by conspicuous paucity of large scale full length Fv data.


Subject(s)
Gene Library , Single-Chain Antibodies , Immunoglobulin Heavy Chains/genetics , Single-Chain Antibodies/genetics , High-Throughput Nucleotide Sequencing , Machine Learning
2.
PLoS Biol ; 17(3): e2006859, 2019 03.
Article in English | MEDLINE | ID: mdl-30921319

ABSTRACT

Brain metastases are prevalent in various types of cancer and are often terminal, given the low efficacy of available therapies. Therefore, preventing them is of utmost clinical relevance, and prophylactic treatments are perhaps the most efficient strategy. Here, we show that systemic prophylactic administration of a toll-like receptor (TLR) 9 agonist, CpG-C, is effective against brain metastases. Acute and chronic systemic administration of CpG-C reduced tumor cell seeding and growth in the brain in three tumor models in mice, including metastasis of human and mouse lung cancer, and spontaneous melanoma-derived brain metastasis. Studying mechanisms underlying the therapeutic effects of CpG-C, we found that in the brain, unlike in the periphery, natural killer (NK) cells and monocytes are not involved in controlling metastasis. Next, we demonstrated that the systemically administered CpG-C is taken up by endothelial cells, astrocytes, and microglia, without affecting blood-brain barrier (BBB) integrity and tumor brain extravasation. In vitro assays pointed to microglia, but not astrocytes, as mediators of CpG- C effects through increased tumor killing and phagocytosis, mediated by direct microglia-tumor contact. In vivo, CpG-C-activated microglia displayed elevated mRNA expression levels of apoptosis-inducing and phagocytosis-related genes. Intravital imaging showed that CpG-C-activated microglia cells contact, kill, and phagocytize tumor cells in the early stages of tumor brain invasion more than nonactivated microglia. Blocking in vivo activation of microglia with minocycline, and depletion of microglia with a colony-stimulating factor 1 inhibitor, indicated that microglia mediate the antitumor effects of CpG-C. Overall, the results suggest prophylactic CpG-C treatment as a new intervention against brain metastasis, through an essential activation of microglia.


Subject(s)
Brain Neoplasms/complications , Brain Neoplasms/metabolism , Microglia/metabolism , Microglia/pathology , Oligodeoxyribonucleotides/therapeutic use , Toll-Like Receptor 9/agonists , Toll-Like Receptor 9/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Colony-Stimulating Factors/antagonists & inhibitors , Colony-Stimulating Factors/metabolism , Female , Humans , Lung Neoplasms/complications , Lung Neoplasms/metabolism , Male , Melanoma/complications , Melanoma/metabolism , Mice , Minocycline/metabolism , Phagocytosis/drug effects , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...