Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Genome Med ; 15(1): 61, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563727

ABSTRACT

BACKGROUND: The immune response is a crucial factor for mediating the benefit of cardiac cell therapies. Our previous research showed that cardiomyocyte transplantation alters the cardiac immune response and, when combined with short-term pharmacological CCR2 inhibition, resulted in diminished functional benefit. However, the specific role of innate immune cells, especially CCR2 macrophages on the outcome of cardiomyocyte transplantation, is unclear. METHODS: We compared the cellular, molecular, and functional outcome following cardiomyocyte transplantation in wildtype and T cell- and B cell-deficient Rag2del mice. The cardiac inflammatory response was assessed using flow cytometry. Gene expression profile was assessed using single-cell and bulk RNA sequencing. Cardiac function and morphology were determined using magnetic resonance tomography and immunohistochemistry respectively. RESULTS: Compared to wildtype mice, Rag2del mice show an increased innate immune response at steady state and disparate macrophage response after MI. Subsequent single-cell analyses after MI showed differences in macrophage development and a lower prevalence of CCR2 expressing macrophages. Cardiomyocyte transplantation increased NK cells and monocytes, while reducing CCR2-MHC-IIlo macrophages. Consequently, it led to increased mRNA levels of genes involved in extracellular remodelling, poor graft survival, and no functional improvement. Using machine learning-based feature selection, Mfge8 and Ccl7 were identified as the primary targets underlying these effects in the heart. CONCLUSIONS: Our results demonstrate that the improved functional outcome following cardiomyocyte transplantation is dependent on a specific CCR2 macrophage response. This work highlights the need to study the role of the immune response for cardiomyocyte cell therapy for successful clinical translation.


Subject(s)
Myocardial Infarction , Myocytes, Cardiac , Mice , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Macrophages/metabolism , Monocytes/metabolism , Mice, Inbred C57BL
2.
Int J Mol Sci ; 24(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37240361

ABSTRACT

Cardiovascular diseases are the leading cause of death in industrialized nations. Due to the high number of patients and expensive treatments, according to the Federal Statistical Office (2017) in Germany, cardiovascular diseases account for around 15% of total health costs. Advanced coronary artery disease is mainly the result of chronic disorders such as high blood pressure, diabetes, and dyslipidemia. In the modern obesogenic environment, many people are at greater risk of being overweight or obese. The hemodynamic load on the heart is influenced by extreme obesity, which often leads to myocardial infarction (MI), cardiac arrhythmias, and heart failure. In addition, obesity leads to a chronic inflammatory state and negatively affects the wound-healing process. It has been known for many years that lifestyle interventions such as exercise, healthy nutrition, and smoking cessation drastically reduce cardiovascular risk and have a preventive effect against disorders in the healing process. However, little is known about the underlying mechanisms, and there is significantly less high-quality evidence compared to pharmacological intervention studies. Due to the immense potential of prevention in heart research, the cardiologic societies are calling for research work to be intensified, from basic understanding to clinical application. The topicality and high relevance of this research area are also evident from the fact that in March 2018, a one-week conference on this topic with contributions from top international scientists took place as part of the renowned "Keystone Symposia" ("New Insights into the Biology of Exercise"). Consistent with the link between obesity, exercise, and cardiovascular disease, this review attempts to draw lessons from stem-cell transplantation and preventive exercise. The application of state-of-the-art techniques for transcriptome analysis has opened new avenues for tailoring targeted interventions to very individual risk factors.


Subject(s)
Cardiomyoplasty , Myocardial Infarction , Humans , Obesity/therapy , Overweight , Life Style , Myocardial Infarction/etiology , Myocardial Infarction/prevention & control
3.
Int J Mol Sci ; 23(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36012110

ABSTRACT

Ventricular arrhythmias associated with myocardial infarction (MI) have a significant impact on mortality in patients following heart attack. Therefore, targeted reduction of arrhythmia represents a therapeutic approach for the prevention and treatment of severe events after infarction. Recent research transplanting mesenchymal stem cells (MSC) showed their potential in MI therapy. Our study aimed to investigate the effects of MSC injection on post-infarction arrhythmia. We used our murine double infarction model, which we previously established, to more closely mimic the clinical situation and intramyocardially injected hypoxic pre-conditioned murine MSC to the infarction border. Thereafter, various types of arrhythmias were recorded and analyzed. We observed a homogenous distribution of all types of arrhythmias after the first infarction, without any significant differences between the groups. Yet, MSC therapy after double infarction led to a highly significant reduction in simple and complex arrhythmias. Moreover, RNA-sequencing of samples from stem cell treated mice after re-infarction demonstrated a significant decline in most arrhythmias with reduced inflammatory pathways. Additionally, following stem-cell therapy we found numerous highly expressed genes to be either linked to lowering the risk of heart failure, cardiomyopathy or sudden cardiac death. Moreover, genes known to be associated with arrhythmogenesis and key mutations underlying arrhythmias were downregulated. In summary, our stem-cell therapy led to a reduction in cardiac arrhythmias after MI and showed a downregulation of already established inflammatory pathways. Furthermore, our study reveals gene regulation pathways that have a potentially direct influence on arrhythmogenesis after myocardial infarction.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Myocardial Infarction , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/therapy , Disease Models, Animal , Mesenchymal Stem Cells/metabolism , Mice , Myocardial Infarction/complications , Myocardial Infarction/metabolism , Myocardial Infarction/therapy
4.
Cells ; 9(8)2020 08 03.
Article in English | MEDLINE | ID: mdl-32756334

ABSTRACT

We investigated the influence of syngeneic cardiomyocyte transplantation after myocardial infarction (MI) on the immune response and cardiac function. Methods and Results: We show for the first time that the immune response is altered as a result of syngeneic neonatal cardiomyocyte transplantation after MI leading to improved cardiac pump function as observed by magnetic resonance imaging in C57BL/6J mice. Interestingly, there was no improvement in the capillary density as well as infarct area as observed by CD31 and Sirius Red staining, respectively. Flow cytometric analysis revealed a significantly different response of monocyte-derived macrophages and regulatory T cells after cell transplantation. Interestingly, the inhibition of monocyte infiltration accompanied by cardiomyocyte transplantation diminished the positive effect of cell transplantation alone. The number of CD68+ macrophages in the remote area of the heart observed after four weeks was also different between the groups. Transcriptome analysis showed several changes in the gene expression involving circadian regulation, mitochondrial metabolism and immune responses after cardiomyocyte transplantation. Conclusion: Our work shows that cardiomyocyte transplantation alters the immune response after myocardial infarction with the recruited monocytes playing a role in the beneficial effect of cell transplantation. It also paves the way for further optimization of the efficacy of cardiomyocyte transplantation and their successful translation in the clinic.


Subject(s)
Myocardial Infarction/therapy , Myocardium/immunology , Myocytes, Cardiac/transplantation , Animals , Antigens, CD/immunology , Antigens, Differentiation, Myelomonocytic/immunology , Disease Models, Animal , Gene Expression Profiling , Heart/physiology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Monocytes/immunology , Myocardial Infarction/physiopathology , Myocardium/metabolism , Myocytes, Cardiac/immunology , Receptors, CCR2/immunology , T-Lymphocytes, Regulatory/immunology
5.
EBioMedicine ; 57: 102862, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32629392

ABSTRACT

BACKGROUND: Bone marrow stem cell clonal dysfunction by somatic mutation is suspected to affect post-infarction myocardial regeneration after coronary bypass surgery (CABG). METHODS: Transcriptome and variant expression analysis was studied in the phase 3 PERFECT trial post myocardial infarction CABG and CD133+ bone marrow derived hematopoetic stem cells showing difference in left ventricular ejection fraction (∆LVEF) myocardial regeneration Responders (n=14; ∆LVEF +16% day 180/0) and Non-responders (n=9; ∆LVEF -1.1% day 180/0). Subsequently, the findings have been validated in an independent patient cohort (n=14) as well as in two preclinical mouse models investigating SH2B3/LNK antisense or knockout deficient conditions. FINDINGS: 1. Clinical: R differed from NR in a total of 161 genes in differential expression (n=23, q<0•05) and 872 genes in coexpression analysis (n=23, q<0•05). Machine Learning clustering analysis revealed distinct RvsNR preoperative gene-expression signatures in peripheral blood acorrelated to SH2B3 (p<0.05). Mutation analysis revealed increased specific variants in RvsNR. (R: 48 genes; NR: 224 genes). 2. Preclinical:SH2B3/LNK-silenced hematopoietic stem cell (HSC) clones displayed significant overgrowth of myeloid and immune cells in bone marrow, peripheral blood, and tissue at day 160 after competitive bone-marrow transplantation into mice. SH2B3/LNK-/- mice demonstrated enhanced cardiac repair through augmenting the kinetics of bone marrow-derived endothelial progenitor cells, increased capillary density in ischemic myocardium, and reduced left ventricular fibrosis with preserved cardiac function. 3. VALIDATION: Evaluation analysis in 14 additional patients revealed 85% RvsNR (12/14 patients) prediction accuracy for the identified biomarker signature. INTERPRETATION: Myocardial repair is affected by HSC gene response and somatic mutation. Machine Learning can be utilized to identify and predict pathological HSC response. FUNDING: German Ministry of Research and Education (BMBF): Reference and Translation Center for Cardiac Stem Cell Therapy - FKZ0312138A and FKZ031L0106C, German Ministry of Research and Education (BMBF): Collaborative research center - DFG:SFB738 and Center of Excellence - DFG:EC-REBIRTH), European Social Fonds: ESF/IV-WM-B34-0011/08, ESF/IV-WM-B34-0030/10, and Miltenyi Biotec GmbH, Bergisch-Gladbach, Germany. Japanese Ministry of Health : Health and Labour Sciences Research Grant (H14-trans-001, H17-trans-002) TRIAL REGISTRATION: ClinicalTrials.gov NCT00950274.


Subject(s)
AC133 Antigen/genetics , Bone Marrow Transplantation/methods , Coronary Artery Disease/therapy , Hematopoietic Stem Cell Transplantation/methods , Myocardial Ischemia/therapy , Adolescent , Adult , Aged , Bone Marrow Cells/cytology , Cellular Senescence/genetics , Coronary Artery Disease/genetics , Coronary Artery Disease/physiopathology , Female , Heart/growth & development , Heart/physiopathology , Hematopoietic Stem Cells/cytology , Humans , Male , Middle Aged , Myocardial Ischemia/genetics , Myocardial Ischemia/pathology , Regeneration/genetics , Young Adult
6.
Biomedicines ; 8(6)2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32545336

ABSTRACT

Several cell populations derived from bone marrow (BM) have been shown to possess cardiac regenerative potential. Among these are freshly isolated CD133+ hematopoietic as well as culture-expanded mesenchymal stem cells. Alternatively, by purifying CD271+ cells from BM, mesenchymal progenitors can be enriched without an ex vivo cultivation. With regard to the limited available number of freshly isolated BM-derived stem cells, the effect of the dosage on the therapeutic efficiency is of particular interest. Therefore, in the present pre-clinical study, we investigated human BM-derived CD133+ and CD271+ stem cells for their cardiac regenerative potential three weeks post-myocardial infarction (MI) in a dose-dependent manner. The improvement of the hemodynamic function as well as cardiac remodeling showed no therapeutic difference after the transplantation of both 100,000 and 500,000 stem cells. Therefore, beneficial stem cell transplantation post-MI is widely independent of the cell dose and detrimental stem cell amplification in vitro can likely be avoided.

7.
Cells ; 8(12)2019 12 11.
Article in English | MEDLINE | ID: mdl-31835854

ABSTRACT

Cellular inflammation following acute myocardial infarction has gained increasing importance as a target mechanism for therapeutic approaches. We sought to investigate the effect of syngeneic cardiac induced cells (CiC) on myocardial inflammation using 18F-FDG PET (Positron emission tomography)-based imaging and the resulting effect on cardiac pump function using cardiac magnetic resonance (CMR) imaging in a mouse model of myocardial infarction. Mice underwent permanent left anterior descending coronary artery (LAD) ligation inducing an acute inflammatory response. The therapy group received an intramyocardial injection of 106 CiC into the border zone of the infarction. Five days after myocardial infarction, 18F-FDG PET was performed under anaesthesia with ketamine and xylazine (KX) to image the inflammatory response in the heart. Flow cytometry of the mononuclear cells in the heart was performed to analyze the inflammatory response. The effect of CiC therapy on cardiac function was determined after three weeks by CMR. The 18F-FDG PET imaging of the heart five days after myocardial infarction (MI) revealed high focal tracer accumulation in the border zone of the infarcted myocardium, whereas no difference was observed in the tracer uptake between infarct and remote myocardium. The CiC transplantation induced a shift in 18F-FDG uptake pattern, leading to significantly higher 18F-FDG uptake in the whole heart, as well as the remote area of the heart. Correspondingly, high numbers of CD11+ cells could be measured by flow cytometry in this region. The CiC transplantation significantly improved the left ventricular ejection function (LVEF) three weeks after myocardial infarction. The CiC transplantation after myocardial infarction leads to an improvement in pump function through modulation of the cellular inflammatory response five days after myocardial infarction. By combining CiC transplantation and the cardiac glucose uptake suppression protocol with KX in a mouse model, we show for the first time, that imaging of cellular inflammation after myocardial infarction using 18F-FDG PET can be used as an early prognostic tool for assessing the efficacy of cardiac stem cell therapies.


Subject(s)
CD11 Antigens/metabolism , Fluorodeoxyglucose F18/administration & dosage , Heart/diagnostic imaging , Mouse Embryonic Stem Cells/transplantation , Myocardial Infarction/therapy , Animals , Cells, Cultured , Disease Models, Animal , Heart/physiopathology , Humans , Magnetic Resonance Imaging, Cine , Mice , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/immunology , Myocardial Infarction/physiopathology , Positron-Emission Tomography , Treatment Outcome , Ventricular Function, Left
8.
Cells ; 8(12)2019 11 20.
Article in English | MEDLINE | ID: mdl-31757119

ABSTRACT

BACKGROUND: Ventricular arrhythmias (VA) are a common cause of sudden death after myocardial infarction (MI). Therefore, developing new therapeutic methods for the prevention and treatment of VA is of prime importance. METHODS: Human bone marrow derived CD271+ mesenchymal stem cells (MSC) were tested for their antiarrhythmic effect. This was done through the development of a novel mouse model using an immunocompromised Rag2-/- γc-/- mouse strain subjected to myocardial "infarction-reinfarction". The mice underwent a first ischemia-reperfusion through the left anterior descending (LAD) artery closure for 45 minutes with a subsequent second permanent LAD ligation after seven days from the first infarct. RESULTS: This mouse model induced various types of VA detected with continuous electrocardiogram (ECG) monitoring via implanted telemetry device. The immediate intramyocardial delivery of CD271+ MSC after the first MI significantly reduced VA induced after the second MI. CONCLUSIONS: In addition to the clinical relevance, more closely reflecting patients who suffer from severe ischemic heart disease and related arrhythmias, our new mouse model bearing reinfarction warrants the time required for stem cell engraftment and for the first time enables us to analyze and verify significant antiarrhythmic effects of human CD271+ stem cells in vivo.


Subject(s)
Adapalene/immunology , Anti-Arrhythmia Agents/therapeutic use , Disease Models, Animal , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Myocardial Infarction/therapy , Adapalene/analysis , Animals , Female , Humans , Immunophenotyping , Mice , Mice, Knockout
9.
Cells ; 9(1)2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31892273

ABSTRACT

BACKGROUND: Bone marrow (BM)-derived stem cells with their various functions and characteristics have become a well-recognized source for the cell-based therapies. However, knowledge on their therapeutic potential and the shortage for a cross-link between distinct BM-derived stem cells, primed after the onset of myocardial infarction (MI), seems to be still rudimentary. Therefore, the post-examination of the therapeutic characteristics of such primed hematopoietic CD133+ and mesenchymal CD271+ stem cells was the object of the present study. METHODS AND RESULTS: The effects of respective CD133+ and CD271+ mononuclear cells alone as well as in the co-culture model have been explored with focus on their angiogenic potential. The phenotypic analysis revealed a small percentage of isolated cells expressing both surface markers. Moreover, target stem cells isolated with our standardized immunomagnetic isolation procedure did not show any negative alterations following BM storage in regard to cell numbers and/or quality. In vitro network formation relied predominantly on CD271+ stem cells when compared with single CD133+ culture. Interestingly, CD133+ cells contributed in the tube formation, only if they were cultivated in combination with CD271+ cells. Additional to the in vitro examination, therapeutic effects of the primed stem cells were investigated 48 h post MI in a murine model. Hence, we have found a lower expression of transforming growth factor ßeta 3 (TGFß3) as well as an increase of the proangiogenic factors after CD133+ cell treatment in contrast to CD271+ cell treatment. On the other hand, the CD271+ cell therapy led to a lower expression of the inflammatory cytokines. CONCLUSION: The interactions between CD271+ and CD133+ subpopulations the extent to which the combination may enhance cardiac regeneration has still not been investigated so far. We expect that the multiple characteristics and various regenerative effects of CD271+ cells alone as well as in combination with CD133+ will result in an improved therapeutic impact on ischemic heart disease.


Subject(s)
AC133 Antigen/metabolism , Adapalene/metabolism , Cell Differentiation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Myocardial Infarction/therapy , Neovascularization, Physiologic , Animals , Biomarkers , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Proliferation , Disease Models, Animal , Female , Fluorescent Antibody Technique , Gene Expression Profiling , Immunophenotyping , Mesenchymal Stem Cell Transplantation/methods , Mice , Mice, Transgenic , Myocardial Infarction/etiology , Regeneration
10.
Dis Model Mech ; 11(6)2018 06 22.
Article in English | MEDLINE | ID: mdl-29752300

ABSTRACT

Ischemic heart failure is the leading cause of mortality worldwide. An early boost of intracardiac regenerative key mechanisms and angiogenetic niche signaling in cardiac mesenchymal stem cells (MSCs) could improve myocardial infarction (MI) healing. Epicardial erythropoietin (EPO; 300 U kg-1) was compared with intraperitoneal and intramyocardial EPO treatments after acute MI in rats (n=156). Real-time PCR and confocal microscopy revealed that epicardial EPO treatment enhanced levels of intracardiac regenerative key indicators (SDF-1, CXCR4, CD34, Bcl-2, cyclin D1, Cdc2 and MMP2), induced transforming growth factor ß (TGF-ß)/WNT signaling in intramyocardial MSC niches through the direct activation of AKT and upregulation of upstream signals FOS and Fzd7, and augmented intracardiac mesenchymal proliferation 24 h after MI. Cardiac catheterization and tissue analysis showed superior cardiac functions, beneficial remodeling and increased capillary density 6 weeks after MI. Concomitant fluorescence-activated cell sorting, co-cultures with neonatal cardiomyocytes, angiogenesis assays, ELISA, western blotting and RAMAN spectroscopy demonstrated that EPO could promote cardiomyogenic differentiation that was specific of tissue origin and enhance paracrine angiogenetic activity in cardiac CD45-CD44+DDR2+ MSCs. Epicardial EPO delivery might be the optimal route for efficient upregulation of regenerative key signals after acute MI. Early EPO-mediated stimulation of mesenchymal proliferation, synergistic angiogenesis with cardiac MSCs and direct induction of TGF-ß/WNT signaling in intramyocardial cardiac MSCs could initiate an accelerated healing process that enhances cardiac recovery.


Subject(s)
Erythropoietin/therapeutic use , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Myocardial Ischemia/pathology , Myocardial Ischemia/therapy , Myocardium/pathology , Neovascularization, Physiologic , Pericardium/metabolism , Acute Disease , Animals , Antigens, CD/metabolism , Capillaries/pathology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Erythropoietin/administration & dosage , Erythropoietin/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Heart Function Tests , Heart Ventricles/drug effects , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Hemodynamics/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Mesenchymal Stem Cells/drug effects , Mesoderm/pathology , Myocardial Ischemia/physiopathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Neovascularization, Physiologic/drug effects , Rats , Rats, Inbred Lew , Regeneration/drug effects , Transforming Growth Factor beta/metabolism , Wnt Signaling Pathway/drug effects
11.
Cells Tissues Organs ; 206(1-2): 35-45, 2018.
Article in English | MEDLINE | ID: mdl-30630170

ABSTRACT

In-depth knowledge of the mechanisms induced by early postischemic cardiac endogenous mesenchymal stem cells (MSCs) in the acutely ischemic heart could advance our understanding of cardiac regeneration. Herein, we aimed to identify, isolate, and initially characterize the origin, kinetics and fate of cardiac MSCs. This was facilitated by in vivo genetic cell fate mapping through green fluorescent protein (GFP) expression under the control of vimentin induction after acute myocardial infarction (MI). Following permanent ligation of the left anterior descending coronary artery in CreER+ mTom/mGFP+ mice, vimentin/GFP+ cells revealed ischemia-responsive activation, survival, and local enrichment inside the peri-infarction border zone. Fluorescence-activated cell sorting (FACS)-isolated vimentin/GFP+ cells could be strongly expanded in vitro with clonogenic precursor formation and revealed MSC-typical cell morphology. Flow-cytometric analyses demonstrated an increase in cardiac vimentin/GFP+ cells in the ischemic heart, from a 0.6% cardiac mononuclear cell (MNC) fraction at 24 h to 1.6% at 72 h following MI. Sca-1+CD45- cells within the vimentin/GFP+ subtype of this MNC fraction increased from 35.2% at 24 h to 74.6% at 72 h after MI. The cardiac postischemic vimentin/GFP+ MNC subtype showed multipotent adipogenic, chondrogenic, and osteogenic differentiation potential, which is distinctive for MSCs. In conclusion, we demonstrated a seemingly proliferative first response of vimentin- induced cardiac endogenous MSCs in the acutely ischemic heart. Genetically, GFP-targeted in vivo cell tracking, isolation, and in vitro expansion of this cardiac MSC subtype could help to clarify their reparative status in inflammation, fibrogenesis, cell turnover, tissue homeostasis, and myocardial regeneration.


Subject(s)
Mesenchymal Stem Cells/cytology , Myocardial Infarction/pathology , Myocardium/pathology , Vimentin/metabolism , Animals , Cell Differentiation , Cell Proliferation , Cell Separation , Cell Survival , Cells, Cultured , Female , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/metabolism , Leukocyte Common Antigens/analysis , Leukocyte Common Antigens/metabolism , Male , Mesenchymal Stem Cells/metabolism , Mice , Myocardial Infarction/metabolism , Myocardium/metabolism , Vimentin/analysis
12.
Eur Surg Res ; 58(5-6): 341-353, 2017.
Article in English | MEDLINE | ID: mdl-29073604

ABSTRACT

BACKGROUND/PURPOSE: Cardiac mesenchymal stem cells (MSCs) could stimulate cell-specific regenerative mechanisms after myocardial infarction (MI) depending on spatial origin, distribution, and niche regulation. We aimed at identifying and isolating tissue-specific cardiac MSCs that could contribute to regeneration. METHODS: Following permanent ligation of the left anterior descending coronary artery in rats (n = 16), early cardiac tissues and cardiac mononuclear cells (MNCs) were analyzed by immunohistology, confocal laser scanning microscopy, and flow cytometry, respectively. Early postischemic specific MSCs were purified by fluorescence-activated cell sorting, cultivated under standardized culture conditions, and tested for multipotent differentiation in functional identification kits. RESULTS: Cardiac MSC niches were detected intramyocardially in cell clusters after MI and characterized by positive expression for vimentin, CD29, CD44, CD90, CD105, PDGFRα, and DDR2. Following myocardial ischemia, proliferation was induced early and proliferation density was approximately 11% in intramyocardial MSC clusters of the peri-infarction border zone. Cluster sizes increased by 157 and 64% in the peri-infarction and noninfarcted areas of infarcted hearts compared with noninfarcted hearts 24 h following MI, respectively. Coincidentally, flow cytometry analyses illustrated postischemic moderate enrichments of CD45-CD44+ and CD45-DDR2+ cardiac MNCs. We enabled isolation of early postischemic culturable cardiac CD45-CD44+DDR2+ MSCs that demonstrated typical clonogenicity with colony-forming unit-fibroblast formation as well as adipogenic, chondrogenic, and osteogenic differentiation. CONCLUSIONS: MI triggered early proliferation in specific cardiac MSC niches that were organized in intramyocardial clusters. Following targeted isolation, early postischemic cardiac CD45-CD44+DDR2+ MSCs exhibited typical characteristics with multipotent differentiation capacity and clonogenic expansion.


Subject(s)
Mesenchymal Stem Cells/physiology , Myocardial Ischemia , Myocardium/cytology , Regeneration , Animals , Cell Proliferation , Male , Rats, Inbred Lew , Stem Cell Niche
13.
Sci Rep ; 7(1): 9755, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28852100

ABSTRACT

Different subtypes of bone marrow-derived stem cells are characterized by varying functionality and activity after transplantation into the infarcted heart. Improvement of stem cell therapeutics requires deep knowledge about the mechanisms that mediate the benefits of stem cell treatment. Here, we demonstrated that co-transplantation of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) led to enhanced synergistic effects on cardiac remodeling. While HSCs were associated with blood vessel formation, MSCs were found to possess transdifferentiation capacity. This cardiomyogenic plasticity of MSCs was strongly promoted by a gap junction-dependent crosstalk between myocytes and stem cells. The inhibition of cell-cell coupling significantly reduced the expression of the cardiac specific transcription factors NKX2.5 and GATA4. Interestingly, we observed that small non-coding RNAs are exchanged between MSCs and cardiomyocytes in a GJ-dependent manner that might contribute to the transdifferentiation process of MSCs within a cardiac environment. Our results suggest that the predominant mechanism of HSCs contribution to cardiac regeneration is based on their ability to regulate angiogenesis. In contrast, transplanted MSCs have the capability for intercellular communication with surrounding cardiomyocytes, which triggers the intrinsic program of cardiogenic lineage specification of MSCs by providing cardiomyocyte-derived cues.


Subject(s)
Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/physiology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/physiology , Myocardial Infarction/therapy , Signal Transduction , Animals , Cell Communication , Cell Transdifferentiation , Cells, Cultured , Disease Models, Animal , Gap Junctions/metabolism , Humans , Mice, SCID , Myocytes, Cardiac/physiology , Neovascularization, Physiologic
14.
Data Brief ; 13: 569-574, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28706966

ABSTRACT

The data presented in this article are related to the research article "Intramyocardial Fate and Effect of Iron Nanoparticles co-injected with MACS® purified Stem Cell Products" (Müller et al., 2017) [1]. This article complements the cellular localization of superparamagnetic iron dextran particles (MACS® MicroBeads) used for magnetic activated cell sorting (MACS®). Data evaluate the time-dependent detachment of these nanoparticles from CD133+ haematopoietic stem cells (HSCs) and CD271+ mesenchymal stem cells (MSCs). Furthermore, the influence of these stem cells as well as of nanoparticles on cardiac remodeling processes after myocardial infarction (MI) was investigated.

15.
Biomaterials ; 135: 74-84, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28494265

ABSTRACT

BACKGROUND: Magnetic activated cell sorting (MACS®) is routinely used to isolate stem cell subpopulations intended for the treatment of cardiovascular diseases. In strong contrast, studies examining the amount, effect and intramyocardial distribution of iron nanoparticles used for magnetic cell labelling are missing, although iron excess can cause functional disorders in the heart. METHODS AND RESULTS: CD133+ haematopoietic and CD271+ mesenchymal stem cells were purified from bone marrow using automatically and manually MACS® based systems. Flow cytometric measurements demonstrated a rapid loss of MACS® MicroBeads from cells under culture conditions, while storage under hypothermic conditions decelerated their detachment. Moreover, an average loading of ∼11 fg iron/cell caused by magnetic labelling was determined in magnetic particle spectroscopy. Importantly, hemodynamic measurements as well as histological examinations using a myocardial ischemia/reperfusion mouse model showed no influence of MACS® MicroBeads on cardiac regeneration, while the transplantation of stem cells caused a significant improvement. Furthermore, immunostainings demonstrated the clearance of co-injected iron nanoparticles from stem cells and the surrounding heart tissue within 48 h post transplantation. CONCLUSIONS: Our results indicate that iron amounts typically co-injected with MACS® purified stem cells do not harm cardiac functions and are cleared from heart tissue within a few hours. Therefore, we conclude that MACS® MicroBeads exhibit a good compatibility in the cardiac environment.


Subject(s)
Hematopoietic Stem Cells/metabolism , Iron/metabolism , Myocardium/metabolism , Nanoparticles/metabolism , AC133 Antigen/metabolism , Adapalene/metabolism , Animals , Cell Survival/physiology , Cells, Cultured , Flow Cytometry , Hematopoietic Stem Cells/cytology , Humans , Iron/chemistry , Leukocytes, Mononuclear/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice, SCID , Myocardium/cytology , Nanoparticles/chemistry
16.
Stem Cell Res Ther ; 8(1): 33, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28187777

ABSTRACT

BACKGROUND: CD133+ stem cells represent a promising subpopulation for innovative cell-based therapies in cardiovascular regeneration. Several clinical trials have shown remarkable beneficial effects following their intramyocardial transplantation. Yet, the purification of CD133+ stem cells is typically performed in centralized clean room facilities using semi-automatic manufacturing processes based on magnetic cell sorting (MACS®). However, this requires time-consuming and cost-intensive logistics. METHODS: CD133+ stem cells were purified from patient-derived sternal bone marrow using the recently developed automatic CliniMACS Prodigy® BM-133 System (Prodigy). The entire manufacturing process, as well as the subsequent quality control of the final cell product (CP), were realized on-site and in compliance with EU guidelines for Good Manufacturing Practice. The biological activity of automatically isolated CD133+ cells was evaluated and compared to manually isolated CD133+ cells via functional assays as well as immunofluorescence microscopy. In addition, the regenerative potential of purified stem cells was assessed 3 weeks after transplantation in immunodeficient mice which had been subjected to experimental myocardial infarction. RESULTS: We established for the first time an on-site manufacturing procedure for stem CPs intended for the treatment of ischemic heart diseases using an automatized system. On average, 0.88 × 106 viable CD133+ cells with a mean log10 depletion of 3.23 ± 0.19 of non-target cells were isolated. Furthermore, we demonstrated that these automatically isolated cells bear proliferation and differentiation capacities comparable to manually isolated cells in vitro. Moreover, the automatically generated CP shows equal cardiac regeneration potential in vivo. CONCLUSIONS: Our results indicate that the Prodigy is a powerful system for automatic manufacturing of a CD133+ CP within few hours. Compared to conventional manufacturing processes, future clinical application of this system offers multiple benefits including stable CP quality and on-site purification under reduced clean room requirements. This will allow saving of time, reduced logistics and diminished costs.


Subject(s)
Automation, Laboratory/instrumentation , Cell Separation/instrumentation , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/physiology , Myocardial Infarction/therapy , Regeneration/physiology , AC133 Antigen/genetics , AC133 Antigen/metabolism , Aged , Animals , Biomarkers/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/physiology , Cell Differentiation , Cell Proliferation , Cell Separation/methods , Disease Models, Animal , Female , Gene Expression , Hematopoietic Stem Cells/cytology , Humans , Male , Mice , Mice, SCID , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Recovery of Function/physiology , Tissue Donors
17.
Cell Physiol Biochem ; 37(1): 77-93, 2015.
Article in English | MEDLINE | ID: mdl-26303045

ABSTRACT

BACKGROUND/AIMS: CD117(+) stem cell (SC) based therapy is considered an alternative therapeutic option for terminal heart disease. However, controversies exist on the effects of CD117(+) SC implantation. In particular, the link between CD117(+) SC function and angiotensin-II-type-2 receptor (AT2R) after MI is continuously discussed. We therefore asked whether 1) AT2R stimulation influences CD117(+) SC properties in vitro and, 2) which effects can be ascribed to AT2R stimulation in vivo. METHODS: We approached AT2R stimulation with Angiotensin II while simultaneously blocking its opponent receptor AT1 with Losartan. CD117 effects were dissected using a 2D-Matrigel assay and HL-1 co-culture in vitro. A model of myocardial infarction, in which we implanted EGFP(+) CD117 SC, was further applied. RESULTS: While we found indications for AT2R driven vasculogenesis in vitro, co-culture experiments revealed that CD117(+) SC improve vitality of cardiomyocytes independently of AT2R function. Likewise, untreated CD117(+) SC had a positive effect on cardiac function and acted cardioprotective in vivo. CONCLUSIONS: Therefore, our data show that transient AT2R stimulation does not significantly add to the beneficial actions of CD117(+) SC in vivo. Yet, exploiting AT2R driven vasculogenis via an optimized AT2R stimulation protocol may become a promising tool for cardiac SC therapy.


Subject(s)
Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Proto-Oncogene Proteins c-kit/metabolism , Receptor, Angiotensin, Type 2/metabolism , Stem Cells/metabolism , Stem Cells/physiology , Angiotensin II/metabolism , Animals , Cell Line , Cell- and Tissue-Based Therapy/methods , Coculture Techniques/methods , Losartan/pharmacology , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Stem Cells/drug effects
18.
J Cell Mol Med ; 19(8): 1975-85, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25991381

ABSTRACT

Myocardial infarction (MI) is a major condition causing heart failure (HF). After MI, the renin angiotensin system (RAS) and its signalling octapeptide angiotensin II (Ang II) interferes with cardiac injury/repair via the AT1 and AT2 receptors (AT1R, AT2R). Our study aimed at deciphering the mechanisms underlying the link between RAS and cellular components of the immune response relying on a rodent model of HF as well as HF patients. Flow cytometric analyses showed an increase in the expression of CD4(+) AT2R(+) cells in the rat heart and spleen post-infarction, but a reduction in the peripheral blood. The latter was also observed in HF patients. The frequency of rat CD4(+) AT2R(+) T cells in circulating blood, post-infarcted heart and spleen represented 3.8 ± 0.4%, 23.2 ± 2.7% and 22.6 ± 2.6% of the CD4(+) cells. CD4(+) AT2R(+) T cells within blood CD4(+) T cells were reduced from 2.6 ± 0.2% in healthy controls to 1.7 ± 0.4% in patients. Moreover, we characterized CD4(+) AT2R(+) T cells which expressed regulatory FoxP3, secreted interleukin-10 and other inflammatory-related cytokines. Furthermore, intramyocardial injection of MI-induced splenic CD4(+) AT2R(+) T cells into recipient rats with MI led to reduced infarct size and improved cardiac performance. We defined CD4(+) AT2R(+) cells as a T cell subset improving heart function post-MI corresponding with reduced infarction size in a rat MI-model. Our results indicate CD4(+) AT2R(+) cells as a promising population for regenerative therapy, via myocardial transplantation, pharmacological AT2R activation or a combination thereof.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Heart Function Tests , Myocardial Infarction/immunology , Myocardial Infarction/physiopathology , Receptor, Angiotensin, Type 2/metabolism , Ventricular Remodeling , Animals , Cardiotonic Agents/metabolism , Heart Failure/blood , Heart Failure/complications , Heart Failure/immunology , Heart Failure/physiopathology , Humans , Immunomodulation , Interleukin-10/blood , Myocardial Infarction/blood , Myocardial Infarction/complications , Myocardial Ischemia/blood , Myocardial Ischemia/complications , Myocardial Ischemia/immunology , Myocardial Ischemia/physiopathology , Rats, Wistar , Tumor Necrosis Factor-alpha/blood
19.
Stem Cells Int ; 2013: 698076, 2013.
Article in English | MEDLINE | ID: mdl-24194767

ABSTRACT

Human Mesenchymal Stem Cells (hMSCs) present a promising tool for regenerative medicine. However, ex vivo expansion is necessary to obtain sufficient cells for clinical therapy. Conventional growth media usually contain the critical component fetal bovine serum. For clinical use, chemically defined media will be required. In this study, the capability of two commercial, chemically defined, serum-free hMSC growth media (MSCGM-CD and PowerStem) for hMSC proliferation was examined and compared to serum-containing medium (MSCGM). Immunophenotyping of hMSCs was performed using flow cytometry, and they were tested for their ability to differentiate into a variety of cell types. Although the morphology of hMSCs cultured in the different media differed, immunophenotyping displayed similar marker patterns (high expression of CD29, CD44, CD73, and CD90 cell surface markers and absence of CD45). Interestingly, the expression of CD105 was significantly lower for hMSCs cultured in MSCGM-CD compared to MSCGM. Both groups maintained mesenchymal multilineage differentiation potential. In conclusion, the serum-free growth medium is suitable for hMSC culture and comparable to its serum-containing counterpart. As the expression of CD105 has been shown to positively influence hMSC cardiac regenerative potential, the impact of CD105 expression onto clinical use after expansion in MSCGM-CD will have to be tested.

20.
Biomaterials ; 32(35): 9218-30, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21911255

ABSTRACT

Recent study showed that mesenchymal stem cells (MSC) could inhibit apoptosis of endothelial cells in hypoxic condition, increase their survival, and stimulate the angiogenesis process. In this project we applied Laser-Induced-Forward-Transfer (LIFT) cell printing technique and prepared a cardiac patch seeded with human umbilical vein endothelial cells (HUVEC) and human MSC (hMSC) in a defined pattern for cardiac regeneration. We seeded HUVEC and hMSC in a defined pattern on a Polyester urethane urea (PEUU) cardiac patch. On control patches an equal amount of cells was randomly seeded without LIFT. Patches were cultivated in vitro or transplanted in vivo to the infarcted zone of rat hearts after LAD-ligation. Cardiac performance was measured by left ventricular catheterization 8 weeks post infarction. Thereafter hearts were perfused with fluorescein tomato lectin for the assessment of functional blood vessels and stored for histology analyses. We demonstrated that LIFT-derived cell seeding pattern definitely modified growth characteristics of co-cultured HUVEC and hMSC leading to increased vessel formation and found significant functional improvement of infarcted hearts following transplantation of a LIFT-tissue engineered cardiac patch. Further, we could show enhanced capillary density and integration of human cells into the functionally connected vessels of murine vascular system. LIFT-based Tissue Engineering of cardiac patches for the treatment of myocardial infarction might improve wound healing and functional preservation.


Subject(s)
Heart/physiology , Human Umbilical Vein Endothelial Cells/cytology , Lasers , Mesenchymal Stem Cells/cytology , Regeneration/physiology , Regenerative Medicine/methods , Animals , Capillaries/drug effects , Capillaries/pathology , Cell Movement/drug effects , Cell Separation , Cells, Cultured , Fibrosis , Heart/drug effects , Heart Function Tests/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Immunophenotyping , Implants, Experimental , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Neovascularization, Physiologic/drug effects , Rats , Regeneration/drug effects , Tissue Scaffolds/chemistry , Urethane/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...