Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Math Biosci Eng ; 18(2): 1238-1279, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33757185

ABSTRACT

The metabolic, hormonal and psychological determinants of the feeding behavior in humans are numerous and complex. A plausible model of the initiation, continuation and cessation of meals taking into account the most relevant such determinants would be very useful in simulating food intake over hours to days, thus providing input into existing models of nutrient absorption and metabolism. In the present work, a meal model is proposed, incorporating stomach distension, glycemic variations, ghrelin dynamics, cultural habits and influences on the initiation and continuation of meals, reflecting a combination of hedonic and appetite components. Given a set of parameter values (portraying a single subject), the timing and size of meals are stochastic. The model parameters are calibrated so as to reflect established medical knowledge on data of food intake from the National Health and Nutrition Examination Survey (NHANES) database during years 2015 and 2016.


Subject(s)
Appetite , Meals , Eating , Humans , Models, Theoretical , Nutrition Surveys
2.
Math Biosci Eng ; 17(5): 5027-5058, 2020 07 22.
Article in English | MEDLINE | ID: mdl-33120539

ABSTRACT

Hemorrhagic shock is a form of hypovolemic shock determined by rapid and large loss of intravascular blood volume and represents the first cause of death in the world, whether on the battlefield or in civilian traumatology. For this, the ability to prevent hemorrhagic shock remains one of the greatest challenges in the medical and engineering fields. The use of mathematical models of the cardiocirculatory system has improved the capacity, on one hand, to predict the risk of hemorrhagic shock and, on the other, to determine efficient treatment strategies. In this paper, a comparison between two mathematical models that simulate several hemorrhagic scenarios is presented. The models considered are the Guyton and the Zenker model. In the vast panorama of existing cardiovascular mathematical models, we decided to compare these two models because they seem to be at the extremes as regards the complexity and the detail of information that they analyze. The Guyton model is a complex and highly structured model that represents a milestone in the study of the cardiovascular system; the Zenker model is a more recent one, developed in 2007, that is relatively simple and easy to implement. The comparison between the two models offers new prospects for the improvement of mathematical models of the cardiovascular system that may prove more effective in the study of hemorrhagic shock.


Subject(s)
Shock, Hemorrhagic , Hemodynamics , Humans , Models, Cardiovascular , Shock, Hemorrhagic/therapy
3.
J Med Syst ; 40(11): 234, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27653041

ABSTRACT

Mathematical modeling and simulation with medical applications has gained much interest in the last few years, mainly due to the widespread availability of low-cost technology and computational power. This paper presents an integrated platform for the in-silico simulation of trauma incidents, based on a suite of interacting mathematical models. The models cover the generation of a scenario for an incident, a model of physiological evolution of the affected individuals, including the possible effect of the treatment, and a model of evolution in time of the required medical resources. The problem of optimal resource allocation is also investigated. Model parameters have been identified according to the expertise of medical doctors and by reviewing some related literature. The models have been implemented and exposed as web services, while some software clients have been built for the purpose of testing. Due to its extendability, our integrated platform highlights the potential of model-based simulation in different health-related fields, such as emergency medicine and personal health systems. Modifications of the models are already being used in the context of two funded projects, aiming at evaluating the response of health systems to major incidents with and without model-based decision support.


Subject(s)
Computer Simulation , Disaster Planning/methods , Models, Theoretical , Wounds and Injuries/therapy , Health Care Rationing/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...