Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cardiovasc Eng Technol ; 14(1): 13-24, 2023 02.
Article in English | MEDLINE | ID: mdl-35618869

ABSTRACT

PURPOSE: With extravascular implantable cardioverter defibrillator leads placed beneath the sternum, it is important to quantify heart motion relative to the rib cage with postural changes and respiration. METHODS: MRI scans from five males and five females were collected in upright and supine postures at end inspiration [n = 10 each]. Left and right decubitus [n = 8 each] and prone [n = 5] MRIs at end inspiration and supine MRIs at end expiration [n = 5] were collected on a subset. Four cardiothoracic measurements, six cardiac measurements, and six cardiac landmarks were collected to measure changes across different postures and stages of respiration. RESULTS: The relative location of the LV apex to the nearest intercostal space was significantly different between the supine and decubitus postures (average ± SD difference: - 15.7 ± 11.4 mm; p < 0.05). The heart centroid to xipho-sternal junction distance was 9.7 ± 7.9 mm greater in the supine posture when compared to the upright posture (p < 0.05). Cardiac landmark motion in the lateral direction was largest due to postural movement (range 23-50 mm) from the left decubitus to the right decubitus posture, and less influenced by respiration (5-17 mm). Caudal-cranial displacement was generally larger due to upright posture (13-23 mm caudal) and inspiration (7-20 mm cranial). CONCLUSIONS: This study demonstrates that the location of the heart with respect to the rib cage varies with posture and respiration. The gravitational effects of postural shifts on the heart position are roughly 2-3 times larger than the effects of normal respiration.


Subject(s)
Defibrillators, Implantable , Male , Female , Humans , Respiration , Heart , Posture
2.
Comput Methods Biomech Biomed Engin ; 25(12): 1332-1349, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34866520

ABSTRACT

Eleven Crash Injury Research and Engineering Network (CIREN) frontal crashes were reconstructed using a novel, time-efficient methodology involving a simplified vehicle model. Kinematic accuracy was assessed using novel kinematic scores between 0-1 and chest injury was assessed using literature-defined injury metric time histories. The average kinematic score across all simulations was 0.87, indicating good kinematic accuracy. Time histories for chest compression, rib strain, shoulder belt force, and steering column force discerned the most causative components of chest injury in all cases. Abbreviated Injury Scale (AIS) 2+ and AIS 3+ chest injury risk functions using belt force identified chest injury with 81.8% success.


Subject(s)
Accidents, Traffic , Thoracic Injuries , Abbreviated Injury Scale , Biomechanical Phenomena , Finite Element Analysis , Humans
3.
J Biomech Eng ; 142(5)2020 05 01.
Article in English | MEDLINE | ID: mdl-31701120

ABSTRACT

The goals of this study are to compare the lumbar spine response variance between the hybrid III, test device for human occupant restraint (THOR), and global human body models consortium simplified 50th percentile (GHBMC M50-OS) finite element models and evaluate the sensitivity of lumbar spine injury metrics to multidirectional acceleration pulses for spaceflight landing conditions. The hybrid III, THOR, and GHBMC models were positioned in a baseline posture within a generic seat with side guards and a five-point restraint system. Thirteen boundary conditions, which were categorized as loading condition variables and environmental variables, were included in the parametric study using a Latin hypercube design of experiments. Each of the three models underwent 455 simulations for a total of 1365 simulations. The hybrid III and THOR models exhibited similar lumbar compression forces. The average lumbar compression force was 45% higher for hybrid III (2.2 ± 1.5 kN) and 51% higher for THOR (2.0 ± 1.6 kN) compared to GHBMC (1.3 ± 0.9 kN). Compared to hybrid III, THOR sustained an average 64% higher lumbar flexion moment and an average 436% higher lumbar extension moment. The GHBMC model sustained much lower bending moments compared to hybrid III and THOR. Regressions revealed that lumbar spine responses were more sensitive to loading condition variables than environmental variables across all models. This study quantified the intermodel lumbar spine response variations and sensitivity between hybrid III, THOR, and GHBMC. Results improve the understanding of lumbar spine response in spaceflight landings.


Subject(s)
Lumbar Vertebrae , Acceleration , Accidents, Traffic , Biomechanical Phenomena , Computer Simulation , Finite Element Analysis , Weight-Bearing
4.
Cardiovasc Eng Technol ; 10(4): 543-552, 2019 12.
Article in English | MEDLINE | ID: mdl-31637595

ABSTRACT

PURPOSE: Approximately 5.7 million people in the US are affected by congestive heart failure. This study aimed to quantitatively evaluate cardiothoracic morphology and variability within a cohort of heart failure patients for the purpose of optimally engineering cardiac devices for a variety of heart failure patients. METHODS: Co-registered cardiac-gated and non-gated chest computed tomography (CT) scans were analyzed from 20 heart failure patients (12 males; 8 females) who were primarily older adults (79.5 ± 8.8 years). Twelve cardiothoracic measurements were collected and compared to study sex and left ventricular (LV) ejection fraction (EF) type differences in cardiothoracic morphology. RESULTS: Four measures were significantly greater in males compared to females: LV long-axis length, LV end diastolic diameter (LVEDD) at 50% length of the LV long-axis, the minimal distance between the sternum and heart, and the angle between the LV long-axis and coronal plane. Four measures were significantly greater in patients with reduced EF compared to preserved LV: LV long-axis length, LVEDD at 50% length of the LV long-axis, left ventricular volume normalized by body surface area, and the angle between the mitral valve plane and LV long-axis. CONCLUSIONS: These cardiothoracic morphology measurements are important to consider in the design of cardiac devices for heart failure management (e.g. cardiac pacemakers, ventricular assist devices, and implantable defibrillators), since morphology differs by sex and ejection fraction.


Subject(s)
Cardiac-Gated Imaging Techniques , Defibrillators, Implantable , Heart Failure/diagnostic imaging , Heart-Assist Devices , Pacemaker, Artificial , Prosthesis Design , Stroke Volume , Tomography, X-Ray Computed , Ventricular Function, Left , Aged , Aged, 80 and over , Electrocardiography , Female , Heart Failure/physiopathology , Heart Failure/therapy , Humans , Male , Predictive Value of Tests , Sex Factors
5.
Traffic Inj Prev ; 20(sup2): S96-S102, 2019.
Article in English | MEDLINE | ID: mdl-31951749

ABSTRACT

Objective: The objective was to quantify head injury metric sensitivity of the 50th percentile male Hybrid III, THOR, and Global Human Body Models Consortium simplified occupant (GHBMC M50-OS) to changes in loading conditions in loading regimes that may be experienced by occupants of spaceflight vehicles or highly autonomous vehicles (HAVs) with nontraditional seating configurations.Methods: A Latin hypercube (LHD) design of experiments (DOE) was employed to develop boundary conditions for 455 unique acceleration profiles. Three previously validated finite element (FE) models of the Hybrid III anthropomorphic test device (ATD), THOR ATD, and GHBMC M50-OS were positioned in an upright 90°-90°-90° seat and with a 5-point belt. Acceleration pulses were applied to each of the three occupants in the ± X, +Y, and ± Z directions, with peak resultant acceleration magnitudes ranging from 5 to 20 G and times to peak ranging from 32.5 to 120.8 ms with duration 250 ms, resulting in 1,248 simulations. Head injury metrics included peak linear head acceleration, peak rotational head acceleration, head injury criteria (HIC15), and brain injury criteria (BrIC). Injury metrics were regressed against boundary condition parameters using 2nd order multiple polynomial regression, and compared between occupants using matched pairs Wilcoxon signed rank analysis.Results: Across the 416 matched-simulations that reached normal termination with all three models, HIC15 values ranged from 1.0-396.5 (Hybrid III), 1.2-327.9 (THOR), and 0.6-585.6 (GHBMC). BrIC ranged from 0.03-0.95 (Hybrid III), 0.03-1.21 (THOR), and 0.04-0.84 (GHBMC). Wilcoxon signed rank analysis demonstrated significant pairwise differences between each of the three occupant models for head injury metrics. For HIC15, the largest divergence between GHBMC and the ATDs was observed in simulations with components of combined underbody and rear impact loading. The three models performed most similarly with respect to BrIC output when loaded in a frontal direction. Both the GHBMC and the Hybrid III produced lower values of BrIC than the THOR on average, with the differences most pronounced in rear impact loading.Conclusion: In conclusion, observed differences between the occupant models' head injury metric output were quantified. Loading direction had a large effect on metric outcome and metric comparability across models, with frontal and rear impacts with low vertical acceleration tending to be the most similar. One explanation for these differences could be the differences in neck stiffness between the models that allowed more rotation in the GHBMC and THOR. Care should be taken when using ATDs as human volunteer surrogates in these low energy events.


Subject(s)
Accidents, Traffic , Craniocerebral Trauma/etiology , Models, Anatomic , Space Flight , Acceleration , Anthropometry , Automation/instrumentation , Biomechanical Phenomena , Brain Injuries/etiology , Brain Injuries/physiopathology , Craniocerebral Trauma/physiopathology , Finite Element Analysis , Head Movements/physiology , Humans , Male , Manikins , Rotation , Weight-Bearing
6.
Ann Biomed Eng ; 47(2): 487-511, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30311040

ABSTRACT

A goal of the Human Research Program at National Aeronautics and Space Administration (NASA) is to analyze and mitigate the risk of occupant injury due to dynamic loads. Experimental tests of human subjects and biofidelic anthropomorphic test devices provide valuable kinematic and kinetic data related to injury risk exposure. However, these experiments are expensive and time consuming compared to computational simulations of similar impact events. This study aimed to simulate human volunteer biodynamic response to unidirectional accelerative loading. Data from seven experimental studies involving 212 volunteer tests performed at the Air Force Research Laboratory were used to reconstruct 13 unique loading conditions across four different loading directions using finite element human body model (HBM) simulations. Acceleration pulses and boundary conditions from the experimental tests were applied to the Global Human Body Models Consortium (GHBMC) simplified 50th percentile male occupant (M50-OS) using the LS-Dyna finite element solver. Head acceleration, chest acceleration, and seat belt force traces were compared between the experimental and matched simulation signals using correlation and analysis (CORA) software and averaged into a comprehensive response score ranging from 0 to 1 with 1 representing a perfect match. The mean comprehensive response scores were 0.689 ± 0.018 (mean ± 1 standard deviation) in two frontal simulations, 0.683 ± 0.060 in four rear simulations, 0.676 ± 0.043 in five lateral simulations, and 0.774 ± 0.013 in two vertical simulations. The CORA scores for head and chest accelerations in these simulations exceeded mean scores reported in the original development and validation of the GHBMC M50-OS model. Collectively, the CORA scores indicated that the HBM in these boundary conditions closely replicated the kinematics of the human volunteers across all loading directions.


Subject(s)
Acceleration , Gravitation , Models, Biological , Volunteers , Adult , Biomechanical Phenomena , Female , Finite Element Analysis , Humans , Male
7.
J Biomech Eng ; 141(3)2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30383185

ABSTRACT

The use of anthropomorphic test devices (ATDs) for calculating injury risk of occupants in spaceflight scenarios is crucial for ensuring the safety of crewmembers. Finite element (FE) modeling of ATDs reduces cost and time in the design process. The objective of this study was to validate a Hybrid III ATD FE model using a multidirection test matrix for future spaceflight configurations. Twenty-five Hybrid III physical tests were simulated using a 50th percentile male Hybrid III FE model. The sled acceleration pulses were approximately half-sine shaped, and can be described as a combination of peak acceleration and time to reach peak (rise time). The range of peak accelerations was 10-20 G, and the rise times were 30-110 ms. Test directions were frontal (-GX), rear (GX), vertical (GZ), and lateral (GY). Simulation responses were compared to physical tests using the correlation and analysis (CORA) method. Correlations were very good to excellent and the order of best average response by direction was -GX (0.916±0.054), GZ (0.841±0.117), GX (0.792±0.145), and finally GY (0.775±0.078). Qualitative and quantitative results demonstrated the model replicated the physical ATD well and can be used for future spaceflight configuration modeling and simulation.

8.
Traffic Inj Prev ; 19(sup2): S32-S39, 2018.
Article in English | MEDLINE | ID: mdl-30010420

ABSTRACT

OBJECTIVE: This study aimed to reconstruct 11 motor vehicle crashes (6 with thoracolumbar fractures and 5 without thoracolumbar fractures) and analyze the fracture mechanism, fracture predictors, and associated parameters affecting thoracolumbar spine response. METHODS: Eleven frontal crashes were reconstructed with a finite element simplified vehicle model (SVM). The SVM was tuned to each case vehicle and the Total HUman Model for Safety (THUMS) Ver. 4.01 was scaled and positioned in a baseline configuration to mimic the documented precrash driver posture. The event data recorder crash pulse was applied as a boundary condition. For the 6 thoracolumbar fracture cases, 120 simulations to quantify uncertainty and response variation were performed using a Latin hypercube design of experiments (DOE) to vary seat track position, seatback angle, steering column angle, steering column position, and D-ring height. Vertebral loads and bending moments were analyzed, and lumbar spine indices (unadjusted and age-adjusted) were developed to quantify the combined loading effect. Maximum principal strain and stress data were collected in the vertebral cortical and trabecular bone. DOE data were fit to regression models to examine occupant positioning and thoracolumbar response correlations. RESULTS: Of the 11 cases, both the vertebral compression force and bending moment progressively increased from superior to inferior vertebrae. Two thoracic spine fracture cases had higher average compression force and bending moment across all thoracic vertebral levels, compared to 9 cases without thoracic spine fractures (force: 1,200.6 vs. 640.8 N; moment: 13.7 vs. 9.2 Nm). Though there was no apparent difference in bending moment at the L1-L2 vertebrae, lumbar fracture cases exhibited higher vertebral bending moments in L3-L4 (fracture/nonfracture: 45.7 vs. 33.8 Nm). The unadjusted lumbar spine index correctly predicted thoracolumbar fracture occurrence for 9 of the 11 cases (sensitivity = 1.0; specificity = 0.6). The age-adjusted lumbar spine index correctly predicted thoracolumbar fracture occurrence for 10 of the 11 cases (sensitivity = 1.0; specificity = 0.8). The age-adjusted principal stress in the trabecular bone was an excellent indicator of fracture occurrence (sensitivity = 1.0; specificity = 1.0). A rearward seat track position and reclined seatback increased the thoracic spine bending moment by 111-329%. A more reclined seatback increased the lumbar force and bending moment by 16-165% and 67-172%, respectively. CONCLUSIONS: This study provided a computational framework for assessing thoracolumbar fractures and also quantified the effect of precrash driver posture on thoracolumbar response. Results aid in the evaluation of motor vehicle crash-induced vertebral fractures and the understanding of factors contributing to fracture risk.


Subject(s)
Accidents, Traffic , Lumbar Vertebrae/injuries , Spinal Fractures/pathology , Thoracic Vertebrae/injuries , Adult , Aged , Aged, 80 and over , Computer Simulation , Female , Humans , Lumbar Vertebrae/pathology , Male , Middle Aged , Posture , Spinal Fractures/classification , Spinal Fractures/etiology , Thoracic Vertebrae/pathology , Young Adult
9.
Traffic Inj Prev ; 19(sup1): S21-S28, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29584493

ABSTRACT

OBJECTIVE: Lower extremity injuries are the most frequent Abbreviated Injury Scale (AIS) 2 injury for drivers in frontal crashes. The objective was to reconstruct 11 real-world motor vehicle crashes (2 with AIS 2+ distal lower extremity injury and 9 without lower extremity injury) and to analyze the vehicle parameters and driver attributes that affect injury risk. METHODS: Eleven frontal crashes were reconstructed with a finite element simplified vehicle model (SVM) using a semi-automated optimization method. The SVM was tuned to each corresponding vehicle and the Total HUman Model for Safety (THUMS) Ver 4.01 was scaled and positioned in a baseline configuration to mimic the documented precrash driver posture. The event data recorder crash pulse was applied as the boundary condition for each case. Additionally, for the 2 cases with lower extremity injury, 120 simulations to quantify the uncertainty and response variation were performed varying the following parameters using a Latin hypercube design of experiment (DOE): seat track position, seatback angle, steering column angle, steering column position, and D-ring height. Injury metrics implemented within THUMS were calculated from the femur, tibia, and ankle and cross-compared among the 11 baseline cases using tibia index and multiple injury risk functions. Kinetic and kinematic data from the 120-simulation DOE were analyzed and fit to regression models to examine any causal relationship between occupant positioning and lower extremity injury risk. RESULTS: Of the 11 real-world crashes, both cases with lower extremity injuries resulted in elevated tibia axial forces and resultant bending moments, compared to the 9 cases without lower extremity injury. The average tibia index of the 2 cases with distal lower extremity injury (left: 1.79; right: 1.19) was higher than that in the 9 cases without lower extremity injury (left: 1.16, P =.024; right: 0.82, P =.024). An increased risk of AIS 2+ tibia shaft (33.6%), distal tibia and hindfoot (20.0%), as well as ankle malleolar (14.5%) fracture was also observed for the injured compared to the noninjured cases. Rearward seat track position, reclined seat back angle, and reduced seat height were correlated with elevated tibia axial force and increased tibia index, imposing additional lower extremity injury risk. CONCLUSIONS: This study provides a computational framework for assessing lower extremity injuries and elucidates the effect of precrash driver posture on lower extremity injury risk while accounting for vehicle parameters and driver attributes. Results from the study aid in the evaluation of real-world injury data, the understanding of factors contributing to injury risk, and the prevention of lower extremity injuries.


Subject(s)
Accidents, Traffic/statistics & numerical data , Lower Extremity/injuries , Abbreviated Injury Scale , Adolescent , Adult , Aged , Aged, 80 and over , Biomechanical Phenomena , Female , Finite Element Analysis , Humans , Male , Middle Aged , Posture/physiology , Risk , Young Adult
10.
Stapp Car Crash J ; 62: 415-442, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30609003

ABSTRACT

Computational models of anthropomorphic test devices (ATDs) can be used in crash simulations to quantify the injury risks to occupants in both a cost-effective and time-sensitive manner. The purpose of this study was to validate the performance of a 50th percentile THOR finite element (FE) model against a physical THOR ATD in 11 unique loading scenarios. Physical tests used for validation were performed on a Horizontal Impact Accelerator (HIA) where the peak sled acceleration ranged from 8-20 G and the time to peak acceleration ranged from 40-110 ms. The directions of sled acceleration relative to the THOR model consisted of -GX (frontal impact), +GY (left-sided lateral impact), and +GZ (downward vertical impact) orientations. Simulation responses were compared to physical tests using the CORrelation and Analysis (CORA) method. Using a weighted method, the average response and standard error by direction was +GY (0.83±0.03), -GX (0.80±0.01), and +GZ (0.76±0.03). Qualitative and quantitative results demonstrated the FE model's kinetics and kinematics were sufficiently validated against its counterpart physical model in the tested loading directions.


Subject(s)
Accidents, Traffic , Models, Theoretical , Acceleration , Biomechanical Phenomena , Finite Element Analysis
11.
Traffic Inj Prev ; 17 Suppl 1: 109-15, 2016 09.
Article in English | MEDLINE | ID: mdl-27586111

ABSTRACT

INTRODUCTION: The objective of this study was to reconstruct 4 real-world motor vehicle crashes (MVCs), 2 with lumbar vertebral fractures and 2 without vertebral fractures in order to elucidate the MVC and/or restraint variables that increase this injury risk. METHODS: A finite element (FE) simplified vehicle model (SVM) was used in conjunction with a previously developed semi-automated tuning method to arrive at 4 SVMs that were tuned to mimic frontal crash responses of a 2006 Chevrolet Cobalt, 2012 Ford Escape, 2007 Hummer H3, and 2002 Chevrolet Cavalier. Real-world crashes in the first 2 vehicles resulted in lumbar vertebrae fractures, whereas the latter 2 did not. Once each SVM was tuned to its corresponding vehicle, the Total HUman Model for Safety (THUMS) v4.01 was positioned in 120 precrash configurations in each SVM by varying 5 parameters using a Latin hypercube design (LHD) of experiments: seat track position, seatback angle, steering column angle, steering column telescoping position, and d-ring height. For each case, the event data recorder (EDR) crash pulse was used to apply kinematic boundary conditions to the model. By analyzing cross-sectional vertebral loads, vertebral bending moments, and maximum principal strain and stress in both cortical and trabecular bone, injury metric response as a function of posture and restraint parameters was computed. RESULTS: Tuning the SVM to specific vehicle models produced close matches between the simulated and experimental crash test responses for head, T6, and pelvis resultant acceleration; left and right femur loads; and shoulder and lap belt loads. Though vertebral load in the THUMS simulations was highly similar between injury cases and noninjury cases, the amount of bending moment was much higher for the injury cases. Seatback angle had a large effect on the maximum compressive load and bending moment in the lumbar spine, indicating the upward tilt of the seat pan in conjunction with precrash positioning may increase the likelihood of suffering lumbar injury even in frontal, planar MVCs. CONCLUSION: In conclusion, precrash positioning has a large effect on lumbar injury metrics. The lack of lumbar injury criteria in regulatory crash tests may have led to inadvertent design of seat pans that work to apply axial force to the spinal column during frontal crashes.


Subject(s)
Accidents, Traffic/statistics & numerical data , Lumbar Vertebrae/injuries , Lumbar Vertebrae/physiology , Motor Vehicles/statistics & numerical data , Spinal Fractures/etiology , Adolescent , Adult , Aged , Aged, 80 and over , Biomechanical Phenomena , Female , Finite Element Analysis , Humans , Male , Middle Aged , Models, Biological , Posture/physiology , Risk , Weight-Bearing/physiology , Young Adult
12.
Traffic Inj Prev ; 16 Suppl 2: S124-31, 2015.
Article in English | MEDLINE | ID: mdl-26436221

ABSTRACT

OBJECTIVE: A 3-phase real-world motor vehicle crash (MVC) reconstruction method was developed to analyze injury variability as a function of precrash occupant position for 2 full-frontal Crash Injury Research and Engineering Network (CIREN) cases. METHOD: Phase I: A finite element (FE) simplified vehicle model (SVM) was developed and tuned to mimic the frontal crash characteristics of the CIREN case vehicle (Camry or Cobalt) using frontal New Car Assessment Program (NCAP) crash test data. Phase II: The Toyota HUman Model for Safety (THUMS) v4.01 was positioned in 120 precrash configurations per case within the SVM. Five occupant positioning variables were varied using a Latin hypercube design of experiments: seat track position, seat back angle, D-ring height, steering column angle, and steering column telescoping position. An additional baseline simulation was performed that aimed to match the precrash occupant position documented in CIREN for each case. Phase III: FE simulations were then performed using kinematic boundary conditions from each vehicle's event data recorder (EDR). HIC15, combined thoracic index (CTI), femur forces, and strain-based injury metrics in the lung and lumbar vertebrae were evaluated to predict injury. RESULTS: Tuning the SVM to specific vehicle models resulted in close matches between simulated and test injury metric data, allowing the tuned SVM to be used in each case reconstruction with EDR-derived boundary conditions. Simulations with the most rearward seats and reclined seat backs had the greatest HIC15, head injury risk, CTI, and chest injury risk. Calculated injury risks for the head, chest, and femur closely correlated to the CIREN occupant injury patterns. CTI in the Camry case yielded a 54% probability of Abbreviated Injury Scale (AIS) 2+ chest injury in the baseline case simulation and ranged from 34 to 88% (mean = 61%) risk in the least and most dangerous occupant positions. The greater than 50% probability was consistent with the case occupant's AIS 2 hemomediastinum. Stress-based metrics were used to predict injury to the lower leg of the Camry case occupant. The regional-level injury metrics evaluated for the Cobalt case occupant indicated a low risk of injury; however, strain-based injury metrics better predicted pulmonary contusion. Approximately 49% of the Cobalt occupant's left lung was contused, though the baseline simulation predicted 40.5% of the lung to be injured. CONCLUSIONS: A method to compute injury metrics and risks as functions of precrash occupant position was developed and applied to 2 CIREN MVC FE reconstructions. The reconstruction process allows for quantification of the sensitivity and uncertainty of the injury risk predictions based on occupant position to further understand important factors that lead to more severe MVC injuries.


Subject(s)
Accidents, Traffic/statistics & numerical data , Craniocerebral Trauma/etiology , Femur/injuries , Posture/physiology , Thoracic Injuries/etiology , Abbreviated Injury Scale , Biomechanical Phenomena , Finite Element Analysis , Humans , Risk Assessment
13.
Comput Methods Biomech Biomed Engin ; 18(10): 1044-1055, 2015 Aug.
Article in English | MEDLINE | ID: mdl-24520849

ABSTRACT

This study's purpose was to implement injury metrics into the Total Human Model for Safety (THUMS) mirroring the spinal accelerometers, rib accelerometers and chest band instrumentation from two lateral post-mortem human subject sled test configurations. In both sled configurations, THUMS contacted a flat rigid surface (either a wall or beam) at 6.7 m/s. Sled A maximum simulated wall forces for the thorax, abdomen and pelvis were 7.1, 5.0 and 10.0 kN versus 5.7 ± 0.8, 3.4 ± 1.2 and 6.2 ± 2.7 kN experimentally. Sled B maximum simulated beam forces for the torso and pelvis were 8.0 and 7.6 kN versus 8.5 ± 0.2 and 7.9 ± 2.5 kN experimentally. Quantitatively, force magnitude contributed more to variation between simulated and experimental forces than phase shift. Acceleration-based injury metrics were within one standard deviation of experimental means except for the lower spine in the rigid wall sled test. These validated metrics will be useful for quantifying occupant loading conditions and calculating injury risks in various loading configurations.

14.
Biomed Sci Instrum ; 50: 83-91, 2014.
Article in English | MEDLINE | ID: mdl-25405408

ABSTRACT

In 2011, frontal crashes resulted in 55% of passenger car injuries with 10,277 fatalities and 866,000 injuries in the United States. To better understand frontal crash injury mechanisms, human body finite element models (FEMs) can be used to reconstruct Crash Injury Research and Engineering Network (CIREN) cases. A limitation of this method is the paucity of vehicle FEMs; therefore, we developed a functionally equivalent simplified vehicle model. The New Car Assessment Program (NCAP) data for our selected vehicle was from a frontal collision with Hybrid III (H3) Anthropomorphic Test Device (ATD) occupant. From NCAP test reports, the vehicle geometry was created and the H3 ATD was positioned. The material and component properties optimized using a variation study process were: steering column shear bolt fracture force and stroke resistance, seatbelt pretensioner force, frontal and knee bolster airbag stiffness, and belt friction through the D-ring. These parameters were varied using three successive Latin Hypercube Designs of Experiments with 130-200 simulations each. The H3 injury response was compared to the reported NCAP frontal test results for the head, chest and pelvis accelerations, and seat belt and femur forces. The phase, magnitude, and comprehensive error factors, from a Sprague and Geers analysis were calculated for each injury metric and then combined to determine the simulations with the best match to the crash test. The Sprague and Geers analyses typically yield error factors ranging from 0 to 1 with lower scores being more optimized. The total body injury response error factor for the most optimized simulation from each round of the variation study decreased from 0.466 to 0.395 to 0.360. This procedure to optimize vehicle FEMs is a valuable tool to conduct future CIREN case reconstructions in a variety of vehicles.

SELECTION OF CITATIONS
SEARCH DETAIL
...