Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 141(7): 1220-9, 2010 Jun 25.
Article in English | MEDLINE | ID: mdl-20603002

ABSTRACT

The AP2 adaptor complex (alpha, beta2, sigma2, and mu2 subunits) crosslinks the endocytic clathrin scaffold to PtdIns4,5P(2)-containing membranes and transmembrane protein cargo. In the "locked" cytosolic form, AP2's binding sites for the two endocytic motifs, YxxPhi on the C-terminal domain of mu2 (C-mu2) and [ED]xxxL[LI] on sigma2, are blocked by parts of beta2. Using protein crystallography, we show that AP2 undergoes a large conformational change in which C-mu2 relocates to an orthogonal face of the complex, simultaneously unblocking both cargo-binding sites; the previously unstructured mu2 linker becomes helical and binds back onto the complex. This structural rearrangement results in AP2's four PtdIns4,5P(2)- and two endocytic motif-binding sites becoming coplanar, facilitating their simultaneous interaction with PtdIns4,5P(2)/cargo-containing membranes. Using a range of biophysical techniques, we show that the endocytic cargo binding of AP2 is driven by its interaction with PtdIns4,5P(2)-containing membranes.


Subject(s)
Adaptor Protein Complex 2/chemistry , Binding Sites , Cell Membrane/chemistry , Ligands , Models, Molecular , Phosphatidylinositols/chemistry , Protein Conformation
2.
J Biol Chem ; 284(40): 27646-54, 2009 Oct 02.
Article in English | MEDLINE | ID: mdl-19651769

ABSTRACT

Clathrin-coated vesicles (CCVs) originating from the trans-Golgi network (TGN) provide a major transport pathway from the secretory system to endosomes/lysosomes. Herein we describe paralogous Sec14 domain-bearing proteins, clavesin 1/CRALBPL and clavesin 2, identified through a proteomic analysis of CCVs. Clavesins are enriched on CCVs and form a complex with clathrin heavy chain (CHC) and adaptor protein-1, major coat components of TGN-derived CCVs. The proteins co-localize with markers of endosomes and the TGN as well as with CHC and adaptor protein-1. A membrane mimic assay using the Sec14 domain of clavesin 1 reveals phosphatidylinositol 3,5-bisphosphate as a specific lipid partner. Phosphatidylinositol 3,5-bisphosphate is localized to late endosomes/lysosomes, and interestingly, isoform-specific knockdown of clavesins in neurons using lentiviral delivery of interfering RNA leads to enlargement of a lysosome-associated membrane protein 1-positive membrane compartment with no obvious influence on the CCV machinery at the TGN. Since clavesins are expressed exclusively in neurons, this new protein family appears to provide a unique neuron-specific regulation of late endosome/lysosome morphology.


Subject(s)
Carrier Proteins/metabolism , Clathrin/metabolism , Lipid Metabolism , Lysosomes/metabolism , Neurons/cytology , Neurons/metabolism , Adaptor Protein Complex 1/metabolism , Amino Acid Sequence , Animals , Carrier Proteins/chemistry , Cell Membrane/metabolism , Endosomes/metabolism , Humans , Lysosomal-Associated Membrane Protein 1/metabolism , Mice , Molecular Sequence Data , Organ Specificity , Phosphatidylinositol Phosphates/metabolism , Protein Structure, Tertiary , Protein Transport , trans-Golgi Network/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...