Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Alzheimers Dis ; 56(2): 585-599, 2017.
Article in English | MEDLINE | ID: mdl-28035925

ABSTRACT

The microtubule-associated protein Tau is an intrinsically unfolded, very soluble neuronal protein. Under still unknown circumstances, Tau protein forms soluble oligomers and insoluble aggregates that are closely linked to the cause and progression of various brain pathologies, including Alzheimer's disease. Previously we reported the development of liposome-based vaccines and their efficacy and safety in preclinical mouse models for tauopathy. Here we report the use of a liposomal vaccine for the generation of a monoclonal antibody with particular characteristics that makes it a valuable tool for fundamental studies as well as a candidate antibody for diagnostic and therapeutic applications. The specificity and affinity of antibody ACI-5400 were characterized by a panel of methods: (i) measuring the selectivity for a specific phospho-Tau epitope known to be associated with tauopathy, (ii) performing a combination of peptide and protein binding assays, (iii) staining of brain sections from mouse preclinical tauopathy models and from human subjects representing six different tauopathies, and (iv) evaluating the selective binding to pathological epitopes on extracts from tauopathy brains in non-denaturing sandwich assays. We conclude that the ACI-5400 antibody binds to protein Tau phosphorylated at S396 and favors a conformation that is typically present in the brain of tauopathy patients, including Alzheimer's disease.


Subject(s)
Antibodies, Monoclonal , Tauopathies/diagnosis , Tauopathies/therapy , tau Proteins/immunology , Animals , Antibodies, Monoclonal/metabolism , Antibody Affinity , Antibody Specificity , Brain/metabolism , Brain/pathology , Cells, Cultured , Disease Models, Animal , Epitopes , Humans , Hybridomas , Liposomes , Mice, Transgenic , Neurons/metabolism , Neurons/pathology , Neuropil Threads/metabolism , Neuropil Threads/pathology , Phosphorylation , Protein Binding , Recombinant Proteins/immunology , Tauopathies/immunology , Tauopathies/pathology , Vaccines
2.
Cell Rep ; 16(6): 1690-1700, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27475227

ABSTRACT

The spread of tau pathology correlates with cognitive decline in Alzheimer's disease. In vitro, tau antibodies can block cell-to-cell tau spreading. Although mechanisms of anti-tau function in vivo are unknown, effector function might promote microglia-mediated clearance. In this study, we investigated whether antibody effector function is required for targeting tau. We compared efficacy in vivo and in vitro of two versions of the same tau antibody, with and without effector function, measuring tau pathology, neuron health, and microglial function. Both antibodies reduced accumulation of tau pathology in Tau-P301L transgenic mice and protected cultured neurons against extracellular tau-induced toxicity. Only the full-effector antibody enhanced tau uptake in cultured microglia, which promoted release of proinflammatory cytokines. In neuron-microglia co-cultures, only effectorless anti-tau protected neurons, suggesting full-effector tau antibodies can induce indirect toxicity via microglia. We conclude that effector function is not required for efficacy, and effectorless tau antibodies may represent a safer approach to targeting tau.


Subject(s)
Alzheimer Disease/metabolism , Microglia/metabolism , tau Proteins/metabolism , Alzheimer Disease/pathology , Animals , Antibodies/immunology , Brain/metabolism , Brain/pathology , Cells, Cultured , Coculture Techniques/methods , Cytokines/metabolism , Mice, Transgenic , Neurons/metabolism
3.
PLoS One ; 8(8): e72301, 2013.
Article in English | MEDLINE | ID: mdl-23977276

ABSTRACT

Progressive aggregation of protein Tau into oligomers and fibrils correlates with cognitive decline and synaptic dysfunction, leading to neurodegeneration in vulnerable brain regions in Alzheimer's disease. The unmet need of effective therapy for Alzheimer's disease, combined with problematic pharmacological approaches, led the field to explore immunotherapy, first against amyloid peptides and recently against protein Tau. Here we adapted the liposome-based amyloid vaccine that proved safe and efficacious, and incorporated a synthetic phosphorylated peptide to mimic the important phospho-epitope of protein Tau at residues pS396/pS404. We demonstrate that the liposome-based vaccine elicited, rapidly and robustly, specific antisera in wild-type mice and in Tau.P301L mice. Long-term vaccination proved to be safe, because it improved the clinical condition and reduced indices of tauopathy in the brain of the Tau.P301L mice, while no signs of neuro-inflammation or other adverse neurological effects were observed. The data corroborate the hypothesis that liposomes carrying phosphorylated peptides of protein Tau have considerable potential as safe and effective treatment against tauopathies, including Alzheimer's disease.


Subject(s)
Alzheimer Vaccines/immunology , Antibodies, Neutralizing/blood , Peptides/immunology , Phosphoproteins/immunology , Tauopathies/drug therapy , tau Proteins/immunology , Alzheimer Vaccines/administration & dosage , Animals , Brain/drug effects , Brain/immunology , Brain/physiopathology , Disease Models, Animal , Humans , Liposomes/chemistry , Mice , Mice, Transgenic , Peptides/administration & dosage , Peptides/chemical synthesis , Phosphoproteins/administration & dosage , Phosphoproteins/chemical synthesis , Phosphorylation , Psychomotor Performance/drug effects , Tauopathies/immunology , Tauopathies/physiopathology , Treatment Outcome , Vaccination , tau Proteins/antagonists & inhibitors , tau Proteins/genetics
4.
Blood ; 121(1): 85-94, 2013 Jan 03.
Article in English | MEDLINE | ID: mdl-23144170

ABSTRACT

Immunoglobulin class switching from IgM to IgG in response to peptides is generally T cell-dependent and vaccination in T cell-deficient individuals is inefficient. We show that a vaccine consisting of a dense array of peptides on liposomes induced peptide-specific IgG responses totally independent of T-cell help. Independency was confirmed in mice lacking T cells and in mice deficient for MHC class II, CD40L, and CD28. The IgG titers were high, long-lived, and comparable with titers obtained in wild-type animals, and the antibody response was associated with germinal center formation, expression of activation-induced cytidine deaminase, and affinity maturation. The T cell-independent (TI) IgG response was strictly dependent on ligation of TLR4 receptors on B cells, and concomitant TLR4 and cognate B-cell receptor stimulation was required on a single-cell level. Surprisingly, the IgG class switch was mediated by TIR-domain-containing adapter inducing interferon-ß (TRIF), but not by MyD88. This study demonstrates that peptides can induce TI isotype switching when antigen and TLR ligand are assembled and appropriately presented directly to B lymphocytes. A TI vaccine could enable efficient prophylactic and therapeutic vaccination of patients with T-cell deficiencies and find application in diseases where induction of T-cell responses contraindicates vaccination, for example, in Alzheimer disease.


Subject(s)
Adaptor Proteins, Vesicular Transport/physiology , Amyloid beta-Peptides/immunology , B-Lymphocytes/immunology , Immunoglobulin Class Switching/immunology , Peptide Fragments/immunology , Toll-Like Receptor 4/physiology , Vaccines, Subunit/immunology , Adaptor Proteins, Vesicular Transport/deficiency , Adaptor Proteins, Vesicular Transport/genetics , Adoptive Transfer , Amino Acid Sequence , Amyloid beta-Peptides/administration & dosage , Animals , Antigen Presentation , B-Lymphocytes/metabolism , CD28 Antigens/deficiency , CD28 Antigens/immunology , CD40 Ligand/deficiency , CD40 Ligand/immunology , Germinal Center/immunology , Histocompatibility Antigens Class II/immunology , Humans , Immunoglobulin G/biosynthesis , Immunoglobulin M/biosynthesis , Lipopolysaccharide Receptors/immunology , Liposomes , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Molecular Sequence Data , Ovalbumin/administration & dosage , Ovalbumin/immunology , Peptide Fragments/administration & dosage , Receptors, Antigen, B-Cell/immunology , T-Lymphocytes/immunology , Toll-Like Receptor 4/deficiency , Toll-Like Receptor 4/genetics , Vaccination , Vaccines, Subunit/administration & dosage
5.
J Neurosci ; 32(28): 9677-89, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22787053

ABSTRACT

Passive immunization against ß-amyloid (Aß) has become an increasingly desirable strategy as a therapeutic treatment for Alzheimer's disease (AD). However, traditional passive immunization approaches carry the risk of Fcγ receptor-mediated overactivation of microglial cells, which may contribute to an inappropriate proinflammatory response leading to vasogenic edema and cerebral microhemorrhage. Here, we describe the generation of a humanized anti-Aß monoclonal antibody of an IgG4 isotype, known as MABT5102A (MABT). An IgG4 subclass was selected to reduce the risk of Fcγ receptor-mediated overactivation of microglia. MABT bound with high affinity to multiple forms of Aß, protected against Aß1-42 oligomer-induced cytotoxicity, and increased uptake of neurotoxic Aß oligomers by microglia. Furthermore, MABT-mediated amyloid plaque removal was demonstrated using in vivo live imaging in hAPP((V717I))/PS1 transgenic mice. When compared with a human IgG1 wild-type subclass, containing the same antigen-binding variable domains and with equal binding to Aß, MABT showed reduced activation of stress-activated p38MAPK (p38 mitogen-activated protein kinase) in microglia and induced less release of the proinflammatory cytokine TNFα. We propose that a humanized IgG4 anti-Aß antibody that takes advantage of a unique Aß binding profile, while also possessing reduced effector function, may provide a safer therapeutic alternative for passive immunotherapy for AD. Data from a phase I clinical trial testing MABT is consistent with this hypothesis, showing no signs of vasogenic edema, even in ApoE4 carriers.


Subject(s)
Alzheimer Disease/therapy , Amyloid beta-Peptides/immunology , Immunoglobulin G/pharmacology , Microglia/drug effects , Microglia/metabolism , Neuroprotective Agents/pharmacology , Peptide Fragments/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/blood , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Animals, Newborn , CX3C Chemokine Receptor 1 , Cells, Cultured , Cerebral Cortex/cytology , Disease Models, Animal , Dose-Response Relationship, Drug , Dose-Response Relationship, Immunologic , Double-Blind Method , Enzyme-Linked Immunosorbent Assay , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Green Fluorescent Proteins/genetics , Hippocampus/cytology , Humans , Immunoglobulin G/metabolism , Male , Mice , Mice, Transgenic , Microscopy, Confocal , Middle Aged , Mutation/genetics , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/metabolism , Plaque, Amyloid/immunology , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Presenilin-1/genetics , Protein Binding/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Chemokine/genetics , Statistics, Nonparametric , Time Factors , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...