Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Headache ; 64(5): 533-546, 2024 May.
Article in English | MEDLINE | ID: mdl-38650105

ABSTRACT

OBJECTIVES: Investigation of chronic homocysteine action on the excitability and N-methyl-D-aspartate (NMDA) sensitivity of the peripheral trigeminovascular system of rats. BACKGROUND: Migraine is a neurological disease that affects 15%-20% of the general population. Epidemiological observations show that an increase of the sulfur-containing amino acid homocysteine in plasma-called hyperhomocysteinemia-is associated with a high risk of migraine, especially migraine with aura. In animal studies, rats with hyperhomocysteinemia demonstrated mechanical allodynia, photophobia, and anxiety, and higher sensitivity to cortical spreading depression. In addition, rats with hyperhomocysteinemia were more sensitive in a model of chronic migraine induced by nitroglycerin which indicated the involvement of peripheral nociceptive mechanisms. The present work aimed to analyze the excitability of meningeal afferents and neurons isolated from the trigeminal ganglion of rats with prenatal hyperhomocysteinemia. METHODS: Experiments were performed on male rats born from females fed with a methionine-rich diet before and during pregnancy. The activity of meningeal afferents was recorded extracellularly in hemiskull preparations ex vivo and action potentials were characterized using cluster analysis. The excitability of trigeminal ganglion neurons was assessed using whole-cell patch clamp recording techniques and calcium imaging studies. Meningeal mast cells were stained using toluidine blue. RESULTS: The baseline extracellular recorded electrical activity of the trigeminal nerve was higher in the hyperhomocysteinemia group with larger amplitude action potentials. Lower concentrations of KCl caused an increase in the frequency of action potentials of trigeminal afferents recorded in rat hemiskull ex vivo preparations. In trigeminal ganglion neurons of rats with hyperhomocysteinemia, the current required to elicit at least one action potential (rheobase) was lower, and more action potentials were induced in response to stimulus of 2 × rheobase. In controls, short-term application of homocysteine and its derivatives increased the frequency of action potentials of the trigeminal nerve and induced Ca2+ transients in neurons, which are associated with the activation of NMDA receptors. At the same time, in rats with hyperhomocysteinemia, we did not observe an increased response of the trigeminal nerve to NMDA. Similarly, the parameters of Ca2+ transients induced by NMDA, homocysteine, and its derivatives were not changed in rats with hyperhomocysteinemia. Acute incubation of the meninges in homocysteine and homocysteinic acid did not change the state of the mast cells, whereas in the model of hyperhomocysteinemia, an increased degranulation of mast cells in the meninges was observed. CONCLUSIONS: Our results demonstrated higher excitability of the trigeminal system of rats with hyperhomocysteinemia. Together with our previous finding about the lower threshold of generation of cortical spreading depression in rats with hyperhomocysteinemia, the present data provide evidence of homocysteine as a factor that increases the sensitivity of the peripheral migraine mechanisms, and the control of homocysteine level may be an important strategy for reducing the risk and/or severity of migraine headache attacks.


Subject(s)
Homocysteine , Hyperhomocysteinemia , Meninges , Migraine Disorders , Trigeminal Ganglion , Animals , Hyperhomocysteinemia/complications , Hyperhomocysteinemia/physiopathology , Migraine Disorders/physiopathology , Migraine Disorders/metabolism , Male , Homocysteine/pharmacology , Rats , Trigeminal Ganglion/metabolism , Trigeminal Ganglion/physiopathology , Female , Disease Models, Animal , Action Potentials/physiology , Action Potentials/drug effects , Pregnancy , Rats, Wistar , Patch-Clamp Techniques , Rats, Sprague-Dawley , Neurons, Afferent/physiology , Neurons, Afferent/metabolism
2.
Sci Rep ; 12(1): 8804, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614095

ABSTRACT

A system of lymphatic vessels has been recently characterized in the meninges, with a postulated role in 'cleaning' the brain via cerebral fluid drainage. As meninges are the origin site of migraine pain, we hypothesized that malfunctioning of the lymphatic system should affect the local trigeminal nociception. To test this hypothesis, we studied nociceptive and inflammatory mechanisms in the hemiskull preparations (containing the meninges) of K14-VEGFR3-Ig (K14) mice lacking the meningeal lymphatic system. We recorded the spiking activity of meningeal afferents and estimated the local mast cells population, calcitonin gene-related peptide (CGRP) and cytokine levels as well as the dural trigeminal innervation in freshly-isolated hemiskull preparations from K14-VEGFR3-Ig (K14) or wild type C57BL/6 mice (WT). Spiking activity data have been confirmed in an acquired model of meningeal lymphatic dysfunction (AAV-mVEGFR3(1-4)Ig induced lymphatic ablation). We found that levels of the pro-inflammatory cytokine IL12-p70 and CGRP, implicated in migraine, were reduced in the meninges of K14 mice, while the levels of the mast cell activator MCP-1 were increased. The other migraine-related pro-inflammatory cytokines (basal and stimulated), did not differ between the two genotypes. The patterns of trigeminal innervation in meninges remained unchanged and we did not observe alterations in basal or ATP-induced nociceptive firing in the meningeal afferents associated with meningeal lymphatic dysfunction. In summary, the lack of meningeal lymphatic system is associated with a new balance between pro- and anti-migraine mediators but does not directly trigger meningeal nociceptive state.


Subject(s)
Calcitonin Gene-Related Peptide , Migraine Disorders , Animals , Cytokines , Inflammation , Lymphatic System , Meninges , Mice , Mice, Inbred C57BL , Nociception
3.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35163452

ABSTRACT

The pro-nociceptive role of glutamate in the CNS in migraine pathophysiology is well established. Glutamate, released from trigeminal afferents, activates second order nociceptive neurons in the brainstem. However, the function of peripheral glutamate receptors in the trigeminovascular system suggested as the origin site for migraine pain, is less known. In the current project, we used calcium imaging and patch clamp recordings from trigeminal ganglion (TG) neurons, immunolabelling, CGRP assay and direct electrophysiological recordings from rat meningeal afferents to investigate the role of glutamate in trigeminal nociception. Glutamate, aspartate, and, to a lesser extent, NMDA under free-magnesium conditions, evoked calcium transients in a fraction of isolated TG neurons, indicating functional expression of NMDA receptors. The fraction of NMDA sensitive neurons was increased by the migraine mediator CGRP. NMDA also activated slowly desensitizing currents in 37% of TG neurons. However, neither glutamate nor NMDA changed the level of extracellular CGRP. TG neurons expressed both GluN2A and GluN2B subunits of NMDA receptors. In addition, after removal of magnesium, NMDA activated persistent spiking activity in a fraction of trigeminal nerve fibers in meninges. Thus, glutamate activates NMDA receptors in somas of TG neurons and their meningeal nerve terminals in magnesium-dependent manner. These findings suggest that peripherally released glutamate can promote excitation of meningeal afferents implicated in generation of migraine pain in conditions of inherited or acquired reduced magnesium blockage of NMDA channels and support the usage of magnesium supplements in migraine.


Subject(s)
Calcium/metabolism , Glutamic Acid/pharmacology , Nociception/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Trigeminal Ganglion/cytology , Animals , Aspartic Acid/pharmacology , Cells, Cultured , Male , Migraine Disorders/metabolism , N-Methylaspartate/pharmacology , Patch-Clamp Techniques , Rats , Trigeminal Ganglion/drug effects , Trigeminal Ganglion/metabolism
4.
Neurotherapeutics ; 18(1): 556-568, 2021 01.
Article in English | MEDLINE | ID: mdl-33205382

ABSTRACT

With a prevalence of 15%, migraine is the most common neurological disorder and among the most disabling diseases, taking into account years lived with disability. Current oral medications for migraine show variable effects and are frequently associated with intolerable side effects, leading to the dissatisfaction of both patients and doctors. Injectable therapeutics, which include calcitonin gene-related peptide-targeting monoclonal antibodies and botulinum neurotoxin A (BoNT/A), provide a new paradigm for treatment of chronic migraine but are effective only in approximately 50% of subjects. Here, we investigated a novel engineered botulinum molecule with markedly reduced muscle paralyzing properties which could be beneficial for the treatment of migraine. This stapled botulinum molecule with duplicated binding domain-binary toxin-AA (BiTox/AA)-cleaves synaptosomal-associated protein 25 with a similar efficacy to BoNT/A in neurons; however, the paralyzing effect of BiTox/AA was 100 times less when compared to native BoNT/A following muscle injection. The performance of BiTox/AA was evaluated in cellular and animal models of migraine. BiTox/AA inhibited electrical nerve fiber activity in rat meningeal preparations while, in the trigeminovascular model, BiTox/AA raised electrical and mechanical stimulation thresholds in Aδ- and C-fiber nociceptors. In the rat glyceryl trinitrate (GTN) model, BiTox/AA proved effective in inhibiting GTN-induced hyperalgesia in the orofacial formalin test. We conclude that the engineered botulinum molecule provides a useful prototype for designing advanced future therapeutics for an improved efficacy in the treatment of migraine.


Subject(s)
Analgesics/pharmacology , Botulinum Toxins/pharmacology , Migraine Disorders/drug therapy , Analgesics/administration & dosage , Animals , Botulinum Toxins/administration & dosage , Cell Line, Tumor/drug effects , Disease Models, Animal , Electromyography , Humans , Male , Muscle, Skeletal/drug effects , Nitroglycerin/pharmacology , Rats , Rats, Sprague-Dawley , Trigeminal Ganglion/drug effects
5.
Front Cell Neurosci ; 14: 135, 2020.
Article in English | MEDLINE | ID: mdl-32508598

ABSTRACT

Extracellular ATP and serotonin (5-HT) are powerful triggers of nociceptive firing in the meninges, a process supporting headache and whose cellular mechanisms are incompletely understood. The current study aimed to develop, with the neurosimulator NEURON, a novel approach to explore in silico the molecular determinants of the long-lasting, pulsatile nature of migraine attacks. The present model included ATP and 5-HT release, ATP diffusion and hydrolysis, 5-HT uptake, differential activation of ATP P2X or 5-HT3 receptors, and receptor subtype-specific desensitization. The model also tested the role of branched meningeal fibers with multiple release sites. Spike generation and propagation were simulated using variable contribution by potassium and sodium channels in a multi-compartment fiber environment. Multiple factors appeared important to ensure prolonged nociceptive firing potentially relevant to long-lasting pain. Crucial roles were observed in: (i) co-expression of ATP P2X2 and P2X3 receptor subunits; (ii) intrinsic activation/inactivation properties of sodium Nav1.8 channels; and (iii) temporal and spatial distribution of ATP/5-HT release sites along the branches of trigeminal nerve fibers. Based on these factors we could obtain either persistent activation of nociceptive firing or its periodic bursting mimicking the pulsating nature of pain. In summary, our model proposes a novel tool for the exploration of peripheral nociception to test the contribution of clinically relevant factors to headache including migraine pain.

6.
Front Cell Neurosci ; 14: 623134, 2020.
Article in English | MEDLINE | ID: mdl-33519387

ABSTRACT

Background: The terminal branches of the trigeminal nerve in meninges are supposed to be the origin site of migraine pain. The main function of these peripheral sensory axons is the initiation and propagation of spikes in the orthodromic direction to the second order neurons in the brainstem. The stimulation of the trigeminal ganglion induces the release of the neuropeptide CGRP in meninges suggesting the antidromic propagation of excitation in these fibers. However, the direct evidence on antidromic spike traveling in meningeal afferents is missing. Methods: By recording of spikes from peripheral or central parts of the trigeminal nerve in rat meninges, we explored their functional activity and tested the expression of ATP-, serotonin-, and capsaicin-gated receptors in the distal vs. proximal parts of these nerves. Results: We show the significant antidromic propagation of spontaneous spikes in meningeal nerves which was, however, less intense than the orthodromic nociceptive traffic due to higher number of active fibers in the latter. Application of ATP, serotonin and capsaicin induced a high frequency nociceptive firing in peripheral processes while, in central parts, only ATP and capsaicin were effective. Disconnection of nerve from trigeminal ganglion dramatically reduced the tonic antidromic activity and attenuated the excitatory action of ATP. Conclusion: Our data indicate the bidirectional nociceptive traffic and dissimilar expression of P2X, 5-HT and TRPV1 receptors in proximal vs. distal parts of meningeal afferents, which is important for understanding the peripheral mechanisms of migraine pain.

7.
Front Cell Neurosci ; 13: 195, 2019.
Article in English | MEDLINE | ID: mdl-31133812

ABSTRACT

Peripheral mechanisms of primary headaches such as a migraine remain unclear. Meningeal afferents surrounded by multiple mast cells have been suggested as a major source of migraine pain. Extracellular ATP released during migraine attacks is a likely candidate for activating meningeal afferents via neuronal P2X receptors. Recently, we showed that ATP also increased degranulation of resident meningeal mast cells (Nurkhametova et al., 2019). However, the contribution of ATP-induced mast cell degranulation in aggravating the migraine pain remains unknown. Here we explored the role of meningeal mast cells in the pro-nociceptive effects of extracellular ATP. The impact of mast cells on ATP mediated activation of peripheral branches of trigeminal nerves was measured electrophysiologically in the dura mater of adult wild type (WT) or mast cell deficient mice. We found that a spontaneous spiking activity in the meningeal afferents, at baseline level, did not differ in two groups. However, in WT mice, meningeal application of ATP dramatically (24.6-fold) increased nociceptive firing, peaking at frequencies around 10 Hz. In contrast, in mast cell deficient animals, ATP-induced excitation was significantly weaker (3.5-fold). Application of serotonin to meninges in WT induced strong spiking. Moreover, in WT mice, the 5-HT3 antagonist MDL-7222 inhibited not only serotonin but also the ATP induced nociceptive firing. Our data suggest that extracellular ATP activates nociceptive firing in meningeal trigeminal afferents via amplified degranulation of resident mast cells in addition to direct excitatory action on the nerve terminals. This highlights the importance of mast cell degranulation via extracellular ATP, in aggravating the migraine pain.

8.
Neuropharmacology ; 149: 113-123, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30768945

ABSTRACT

BACKGROUND: Recent discovery of mechanosensitive Piezo receptors in trigeminal ganglia suggested the novel molecular candidate for generation of migraine pain. However, the contribution of Piezo channels in migraine pathology was not tested yet. Therefore, in this study, we explored a potential involvement of Piezo channels in peripheral trigeminal nociception implicated in generation of migraine pain. METHODS: We used immunohistochemistry, calcium imaging, calcitonin gene related peptide (CGRP) release assay and electrophysiology in mouse and rat isolated trigeminal neurons and rat hemiskulls to study action of various stimulants of Piezo receptors on migraine-related peripheral nociception. RESULTS: We found that essential (35%) fraction of isolated rat trigeminal neurons responded to chemical Piezo1 agonist Yoda1 and about a half of Yoda1 positive neurons responded to hypo-osmotic solution (HOS) and a quarter to mechanical stimulation by focused ultrasound (US). In ex vivo hemiskull preparation, Yoda1 and HOS largely activated persistent nociceptive firing in meningeal branches of trigeminal nerve. By using our novel cluster analysis of pain spikes, we demonstrated that 42% of fibers responded to Piezo1 agonist and 20% of trigeminal fibers were activated by Yoda1 and by capsaicin, suggesting expression of Piezo receptors in TRPV1 positive peptidergic nociceptive nerve fibers. Consistent with this, Yoda1 promoted the release of the key migraine mediator CGRP from hemiskull preparation. CONCLUSION: Taken together, our data suggest the involvement of mechanosensitive Piezo receptors, in particular, Piezo1 subtype in peripheral trigeminal nociception, which provides a new view on mechanotransduction in migraine pathology and suggests novel molecular targets for anti-migraine medicine.


Subject(s)
Ion Channels/agonists , Meninges/physiology , Migraine Disorders/metabolism , Nociception/drug effects , Nociception/physiology , Animals , Calcium , Ion Channels/metabolism , Mechanoreceptors/physiology , Mechanotransduction, Cellular , Meninges/drug effects , Mice , Mice, Inbred C57BL , Neurons, Afferent/metabolism , Nociceptors/physiology , Pain , Primary Cell Culture , Rats , Rats, Wistar , Sensory Receptor Cells , Trigeminal Nerve/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...