Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Kidney J ; 17(6): sfae147, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38903954

ABSTRACT

Recent findings, including the CONVINCE (comparison of high-dose HDF with high-flux HD) study report, suggest the superiority of high-volume hemodiafiltration (HDF) over high-flux hemodialysis (HD) in improving patients' outcomes. Despite positive patient outcomes, concerns have arisen about the potential negative environmental impact of high-volume HDF, as it may lead to increased water and dialysis fluid consumption and higher waste production. In this manuscript, we address the environmental impact of high-volume HDF, focusing on three key factors: water treatment consumption, dialysis fluid consumption, and solute efficiency markers of HD and HDF. By optimizing HDF prescription through adjustments in operational capabilities, while keeping a high blood flow (i.e., >350 ml/min) such as reducing the QD/QB ratio to 1.2 rather than 1.4 or 1.5 and incorporating automated ultrafiltration and substitution control, we demonstrate that HDF delivers a higher dialysis dose for small- and middle-molecule uremic compounds with the same dialysis fluid consumption, and at equal dialysis doses dialysis fluid consumption is reduced. This finding is supported by real-world data from 26 031 patients who underwent high-volume postdilution HDF at a reduced dialysis flow (430 mL/min) and achieved an effective OCMKt/V of 1.70 (where "OCM" stands for online clearance measurement, "K" represents effective dialysis clearance and "V" denotes total body water measured by multifrequency bioimpedance). In addition, simulation modeling calculations, using blood extraction coefficient, dialysate saturation coefficient and solute clearances with urea (small molecular weight) and ß2-microglobulin (middle molecular weight), consistently show the superiority of postdilution HDF to HD. This holds true even with a significant reduction in dialysis flow down to 430 mL/min, reflecting QD/QB ratio of 1.2. Postdilution HDF generates high ultrafiltrate flow (up to 35% of blood flow), delivering saturated ultrafiltrate to the lower solute concentration containing effluent dialysate, thus enhancing solute clearance which opens the way to reduce the dialysis flow. In conclusion, our analysis, combining simulation and real-world data, suggests that postdilution HDF could be a more environmentally friendly treatment option compared with conventional HD. Additionally, automated user-friendly functions that minimize dialysis fluid use can further strengthen this environmental benefit while enhancing efficiency.

2.
Bioengineering (Basel) ; 10(2)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36829639

ABSTRACT

Despite the significant medical and technical improvements in the field of dialytic renal replacement modalities, morbidity and mortality are excessively high among patients with end-stage kidney disease, and most interventional studies yielded disappointing results. Hemodiafiltration, a dialysis method that was implemented in clinics many years ago and that combines the two main principles of hemodialysis and hemofiltration-diffusion and convection-has had a positive impact on mortality rates, especially when delivered in a high-volume mode as a surrogate for a high convective dose. The achievement of high substitution volumes during dialysis treatments does not only depend on patient characteristics but also on the dialyzer (membrane) and the adequately equipped hemodiafiltration machine. The present review article summarizes the technical aspects of online hemodiafiltration and discusses present and ongoing clinical studies with regards to hard clinical and patient-reported outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...