Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(22): 6538-6544, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38771703

ABSTRACT

With a seminal work of Raghu and Haldane in 2008, concepts of topology have been introduced into optical systems, where some of the most promising routes to an application are efficient and highly coherent topological lasers. While some attempts have been made to excite such structures electrically, the majority of published experiments use a form of laser excitation. In this paper, we use a lattice of vertical resonator polariton micropillars to form an exponentially localized topological Su-Schrieffer-Heeger defect. Upon electrical excitation, the system unequivocally shows polariton lasing from the topological defect using a carefully placed gold contact. Despite the presence of doping and electrical contacts, the polariton band structure clearly preserves its topological properties. At high excitation power the Mott density is exceeded, leading to highly efficient lasing in the weak coupling regime. This work is an important step toward applied topological lasers using vertical resonator microcavity structures.

2.
IEEE Trans Vis Comput Graph ; 25(11): 3190-3201, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31403423

ABSTRACT

Physical keyboards are common peripherals for personal computers and are efficient standard text entry devices. Recent research has investigated how physical keyboards can be used in immersive head-mounted display-based Virtual Reality (VR). So far, the physical layout of keyboards has typically been transplanted into VR for replicating typing experiences in a standard desktop environment. In this paper, we explore how to fully leverage the immersiveness of VR to change the input and output characteristics of physical keyboard interaction within a VR environment. This allows individual physical keys to be reconfigured to the same or different actions and visual output to be distributed in various ways across the VR representation of the keyboard. We explore a set of input and output mappings for reconfiguring the virtual presentation of physical keyboards and probe the resulting design space by specifically designing, implementing and evaluating nine VR-relevant applications: emojis, languages and special characters, application shortcuts, virtual text processing macros, a window manager, a photo browser, a whack-a-mole game, secure password entry and a virtual touch bar. We investigate the feasibility of the applications in a user study with 20 participants and find that, among other things, they are usable in VR. We discuss the limitations and possibilities of remapping the input and output characteristics of physical keyboards in VR based on empirical findings and analysis and suggest future research directions in this area.

SELECTION OF CITATIONS
SEARCH DETAIL
...