Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898213

ABSTRACT

Bacteria have evolved resistance to nearly all known antibacterials, emphasizing the need to identify antibiotics that operate via novel mechanisms. Here we report a class of allosteric inhibitors of DNA gyrase with antibacterial activity against fluoroquinolone-resistant clinical isolates of Escherichia coli. Screening of a small-molecule library revealed an initial isoquinoline sulfonamide hit, which was optimized via medicinal chemistry efforts to afford the more potent antibacterial LEI-800. Target identification studies, including whole-genome sequencing of in vitro selected mutants with resistance to isoquinoline sulfonamides, unanimously pointed to the DNA gyrase complex, an essential bacterial topoisomerase and an established antibacterial target. Using single-particle cryogenic electron microscopy, we determined the structure of the gyrase-LEI-800-DNA complex. The compound occupies an allosteric, hydrophobic pocket in the GyrA subunit and has a mode of action that is distinct from the clinically used fluoroquinolones or any other gyrase inhibitor reported to date. LEI-800 provides a chemotype suitable for development to counter the increasingly widespread bacterial resistance to fluoroquinolones.

2.
Prog Lipid Res ; 89: 101194, 2023 01.
Article in English | MEDLINE | ID: mdl-36150527

ABSTRACT

N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.


Subject(s)
Endocannabinoids , Peroxisome Proliferator-Activated Receptors , Endocannabinoids/metabolism , Polyunsaturated Alkamides , Dehydroepiandrosterone
3.
J Am Chem Soc ; 144(41): 18938-18947, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36197299

ABSTRACT

The fish oil constituent docosahexaenoic acid (DHA, 22:6 n-3) is a signaling lipid with anti-inflammatory properties. The molecular mechanisms underlying the biological effect of DHA are poorly understood. Here, we report the design, synthesis, and application of a complementary pair of bio-orthogonal, photoreactive probes based on the polyunsaturated scaffold DHA and its oxidative metabolite 17-hydroxydocosahexaenoic acid (17-HDHA). In these probes, an alkyne serves as a handle to introduce a fluorescent reporter group or a biotin-affinity tag via copper(I)-catalyzed azide-alkyne cycloaddition. This pair of chemical probes was used to map specific targets of the omega-3 signaling lipids in primary human macrophages. Prostaglandin reductase 1 (PTGR1) was identified as an interaction partner that metabolizes 17-oxo-DHA, an oxidative metabolite of 17-HDHA. 17-oxo-DHA reduced the formation of pro-inflammatory lipids 5-HETE and LTB4 in human macrophages and neutrophils. Our results demonstrate the potential of comparative photoaffinity protein profiling for the discovery of metabolic enzymes of bioactive lipids and highlight the power of chemical proteomics to uncover new biological insights.


Subject(s)
Docosahexaenoic Acids , Fatty Acids, Omega-3 , Humans , Docosahexaenoic Acids/metabolism , Docosahexaenoic Acids/pharmacology , Azides , Copper/pharmacology , Biotin/pharmacology , Leukotriene B4/pharmacology , Fatty Acids, Omega-3/pharmacology , Macrophages , Fish Oils/pharmacology , Anti-Inflammatory Agents/pharmacology , Alkynes/pharmacology , Prostaglandins , Oxidoreductases
4.
Angew Chem Int Ed Engl ; 61(38): e202207640, 2022 09 19.
Article in English | MEDLINE | ID: mdl-35838324

ABSTRACT

In the field of lipid research, bioorthogonal chemistry has made the study of lipid uptake and processing in living systems possible, whilst minimising biological properties arising from detectable pendant groups. To allow the study of unsaturated free fatty acids in live cells, we here report the use of sterculic acid, a 1,2-cyclopropene-containing oleic acid analogue, as a bioorthogonal probe. We show that this lipid can be readily taken up by dendritic cells without toxic side effects, and that it can subsequently be visualised using an inverse electron-demand Diels-Alder reaction with quenched tetrazine-fluorophore conjugates. In addition, the lipid can be used to identify changes in protein oleoylation after immune cell activation. Finally, this reaction can be integrated into a multiplexed bioorthogonal reaction workflow by combining it with two sequential copper-catalysed Huisgen ligation reactions. This allows for the study of multiple biomolecules in the cell simultaneously by multimodal confocal imaging.


Subject(s)
Fatty Acids , Heterocyclic Compounds , Cycloaddition Reaction , Cyclopropanes , Fatty Acids, Monounsaturated , Fluorescent Dyes/chemistry , Heterocyclic Compounds/chemistry , Ionophores
5.
ACS Chem Biol ; 17(5): 1174-1183, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35482948

ABSTRACT

Anandamide or N-arachidonoylethanolamine (AEA) is a signaling lipid that modulates neurotransmitter release via activation of the type 1 cannabinoid receptor (CB1R) in the brain. Termination of anandamide signaling is thought to be mediated via a facilitated cellular reuptake process that utilizes a purported transporter protein. Recently, WOBE437 has been reported as a novel, natural product-based inhibitor of AEA reuptake that is active in cellular and in vivo models. To profile its target interaction landscape, we synthesized pac-WOBE, a photoactivatable probe derivative of WOBE437, and performed chemical proteomics in mouse neuroblastoma Neuro-2a cells. Surprisingly WOBE437, unlike the widely used selective inhibitor of AEA uptake OMDM-1, was found to increase AEA uptake in Neuro-2a cells. In line with this, WOBE437 reduced the cellular levels of AEA and related N-acylethanolamines (NAEs). Using pac-WOBE, we identified saccharopine dehydrogenase-like oxidoreductase (SCCPDH), vesicle amine transport 1 (VAT1), and ferrochelatase (FECH) as WOBE437-interacting proteins in Neuro-2a cells. Further genetic studies indicated that SCCPDH and VAT1 were not responsible for the WOBE437-induced reduction in NAE levels. Regardless of the precise mechanism of action of WOB437 in AEA transport, we have identified SSCPHD, VAT1, and FECH as unprecedented off-targets of this molecule which should be taken into account when interpreting its cellular and in vivo effects.


Subject(s)
Arachidonic Acids , Proteomics , Animals , Arachidonic Acids/metabolism , Arachidonic Acids/pharmacology , Endocannabinoids , Mice , Polyunsaturated Alkamides/pharmacology
6.
Chembiochem ; 21(17): 2431-2434, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32282108

ABSTRACT

The poly-ADP-ribose polymerase (PARP) is a protein from the family of ADP-ribosyltransferases that catalyzes polyadenosine diphosphate ribose (ADPR) formation in order to attract the DNA repair machinery to sites of DNA damage. The inhibition of PARP activity by olaparib can cause cell death, which is of clinical relevance in some tumor types. This demonstrates that quantification of PARP activity in the context of living cells is of great importance. In this work, we present the design, synthesis and biological evaluation of photo-activatable affinity probes inspired by the olaparib molecule that are equipped with a diazirine for covalent attachment upon activation by UV light and a ligation handle for the addition of a reporter group of choice. SDS-PAGE, western blotting and label-free LC-MS/MS quantification analysis show that the probes target the PARP-1 protein and are selectively outcompeted by olaparib; this suggests that they bind in the same enzymatic pocket. Proteomics data are available via ProteomeXchange with identifier PXD018661.


Subject(s)
Photoaffinity Labels/pharmacology , Phthalazines/pharmacology , Piperazines/pharmacology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/analysis , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Cells, Cultured , Humans , Molecular Structure , Photoaffinity Labels/chemical synthesis , Photoaffinity Labels/chemistry , Photochemical Processes , Phthalazines/chemical synthesis , Phthalazines/chemistry , Piperazines/chemical synthesis , Piperazines/chemistry , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Ultraviolet Rays
7.
Bioorg Med Chem ; 27(5): 692-699, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30661740

ABSTRACT

Acute myeloid leukemia (AML) is characterized by fast progression and low survival rates, in which Fms-like tyrosine kinase 3 (FLT3) receptor mutations have been identified as a driver mutation in cancer progression in a subgroup of AML patients. Clinical trials have shown emergence of drug resistant mutants, emphasizing the ongoing need for new chemical matter to enable the treatment of this disease. Here, we present the discovery and topological structure-activity relationship (SAR) study of analogs of isoquinolinesulfonamide H-89, a well-known PKA inhibitor, as FLT3 inhibitors. Surprisingly, we found that the SAR was not consistent with the observed binding mode of H-89 in PKA. Matched molecular pair analysis resulted in the identification of highly active sub-nanomolar azaindoles as novel FLT3-inhibitors. Structure based modelling using the FLT3 crystal structure suggested an alternative, flipped binding orientation of the new inhibitors.


Subject(s)
Aza Compounds/chemistry , Indoles/chemistry , Protein Kinase Inhibitors/chemistry , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Aza Compounds/chemical synthesis , Aza Compounds/metabolism , Binding Sites , Humans , Indoles/chemical synthesis , Indoles/metabolism , Molecular Docking Simulation , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Structure-Activity Relationship , fms-Like Tyrosine Kinase 3/chemistry , fms-Like Tyrosine Kinase 3/metabolism
8.
Curr Top Microbiol Immunol ; 420: 283-319, 2019.
Article in English | MEDLINE | ID: mdl-30242513

ABSTRACT

Lipids perform a wide range of functions inside the cell, ranging from structural building block of membranes and energy storage to cell signaling. The mode of action of many signaling lipids has remained elusive due to their low abundance, high lipophilicity, and inherent instability. Various chemical biology approaches, such as photoaffinity or activity-based protein profiling methods, have been employed to shed light on the biological role of lipids and the lipid-protein interaction profile. In this review, we will summarize the recent developments in the field of chemical probes to study lipid biology, especially in immunology, and indicate potential avenues for future research.


Subject(s)
Immunologic Techniques/methods , Lipid Metabolism/immunology , Lipids/analysis , Lipids/immunology , Lipids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...