Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 290(41): 24715-26, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26309257

ABSTRACT

In eukaryotes, nutrient availability and metabolism are coordinated by sensing mechanisms and signaling pathways, which influence a broad set of cellular functions such as transcription and metabolic pathways to match environmental conditions. In yeast, PKA is activated in the presence of high glucose concentrations, favoring fast nutrient utilization, shutting down stress responses, and boosting growth. On the contrary, Snf1/AMPK is activated in the presence of low glucose or alternative carbon sources, thus promoting an energy saving program through transcriptional activation and phosphorylation of metabolic enzymes. The PKA and Snf1/AMPK pathways share common downstream targets. Moreover, PKA has been reported to negatively influence the activation of Snf1/AMPK. We report a new cross-talk mechanism with a Snf1-dependent regulation of the PKA pathway. We show that Snf1 and adenylate cyclase (Cyr1) interact in a nutrient-independent manner. Moreover, we identify Cyr1 as a Snf1 substrate and show that Snf1 activation state influences Cyr1 phosphorylation pattern, cAMP intracellular levels, and PKA-dependent transcription.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Mitochondrial Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription, Genetic , AMP-Activated Protein Kinases/metabolism , Biocatalysis , Enzyme Activation/drug effects , Gene Expression Regulation, Fungal/drug effects , Glucose/pharmacology , Mutation , Phenotype , Phosphorylation/drug effects , Protein Serine-Threonine Kinases/genetics , Protein Structure, Tertiary , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...