Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Mol Ecol Resour ; : e13957, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576153

ABSTRACT

In coastal British Columbia, Canada, marine megafauna such as humpback whales (Megaptera novaeangliae) and fin whales (Balaenoptera physalus velifera) have been subject to a history of exploitation and near extirpation. While their populations have been in recovery, significant threats are posed to these vulnerable species by proposed natural resource ventures in this region, in addition to the compounding effects of anthropogenic climate change. Genetic tools play a vital role in informing conservation efforts, but the associated collection of tissue biopsy samples can be challenging for the investigators and disruptive to the ongoing behaviour of the targeted whales. Here, we evaluate a minimally intrusive approach based on collecting exhaled breath condensate, or respiratory 'blow' samples, from baleen whales using an unoccupied aerial system (UAS), within Gitga'at First Nation territory for conservation genetics. Minimal behavioural responses to the sampling technique were observed, with no response detected 87% of the time (of 112 UAS deployments). DNA from whale blow (n = 88 samples) was extracted, and DNA profiles consisting of 10 nuclear microsatellite loci, sex identification and mitochondrial (mt) DNA haplotypes were constructed. An average of 7.5 microsatellite loci per individual were successfully genotyped. The success rates for mtDNA and sex assignment were 80% and 89% respectively. Thus, this minimally intrusive sampling method can be used to describe genetic diversity and generate genetic profiles for individual identification. The results of this research demonstrate the potential of UAS-collected whale blow for conservation genetics from a remote location.

2.
Nat Commun ; 14(1): 4020, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463880

ABSTRACT

Parallel evolution provides strong evidence of adaptation by natural selection due to local environmental variation. Yet, the chronology, and mode of the process of parallel evolution remains debated. Here, we harness the temporal resolution of paleogenomics to address these long-standing questions, by comparing genomes originating from the mid-Holocene (8610-5626 years before present, BP) to contemporary pairs of coastal-pelagic ecotypes of bottlenose dolphin. We find that the affinity of ancient samples to coastal populations increases as the age of the samples decreases. We assess the youngest genome (5626 years BP) at sites previously inferred to be under parallel selection to coastal habitats and find it contained coastal-associated genotypes. Thus, coastal-associated variants rose to detectable frequencies close to the emergence of coastal habitat. Admixture graph analyses reveal a reticulate evolutionary history between pelagic and coastal populations, sharing standing genetic variation that facilitated rapid adaptation to newly emerged coastal habitats.


Subject(s)
Bottle-Nosed Dolphin , Genetics, Population , Animals , Genomics , Paleontology , Bottle-Nosed Dolphin/genetics , Ecosystem
3.
Genome Biol Evol ; 15(2)2023 02 03.
Article in English | MEDLINE | ID: mdl-36683406

ABSTRACT

Population genetics is transitioning into a data-driven discipline thanks to the availability of large-scale genomic data and the need to study increasingly complex evolutionary scenarios. With likelihood and Bayesian approaches becoming either intractable or computationally unfeasible, machine learning, and in particular deep learning, algorithms are emerging as popular techniques for population genetic inferences. These approaches rely on algorithms that learn non-linear relationships between the input data and the model parameters being estimated through representation learning from training data sets. Deep learning algorithms currently employed in the field comprise discriminative and generative models with fully connected, convolutional, or recurrent layers. Additionally, a wide range of powerful simulators to generate training data under complex scenarios are now available. The application of deep learning to empirical data sets mostly replicates previous findings of demography reconstruction and signals of natural selection in model organisms. To showcase the feasibility of deep learning to tackle new challenges, we designed a branched architecture to detect signals of recent balancing selection from temporal haplotypic data, which exhibited good predictive performance on simulated data. Investigations on the interpretability of neural networks, their robustness to uncertain training data, and creative representation of population genetic data, will provide further opportunities for technological advancements in the field.


Subject(s)
Deep Learning , Bayes Theorem , Neural Networks, Computer , Algorithms , Genetics, Population
4.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-36056746

ABSTRACT

Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which can detect signatures of spatially varying selection. We demonstrate that DeepGenomeScan outperformed principal component analysis- and redundancy analysis-based genome scans in identifying loci underlying quantitative traits subject to complex spatial patterns of selection. Noticeably, DeepGenomeScan increases statistical power by up to 47.25% under nonlinear environmental selection patterns. We applied DeepGenomeScan to a European human genetic dataset and identified some well-known genes under selection and a substantial number of clinically important genes that were not identified by SPA, iHS, Fst and Bayenv when applied to the same dataset.


Subject(s)
Deep Learning , Genome , Genomics , Humans , Polymorphism, Single Nucleotide , Selection, Genetic
5.
Mol Ecol ; 31(18): 4688-4706, 2022 09.
Article in English | MEDLINE | ID: mdl-35861579

ABSTRACT

Sympatric adaptive phenotypic divergence should be underlain by genomic differentiation between subpopulations. When divergence drives similar patterns of phenotypic and ecological variation within species we expect evolution to draw on common allelic variation. We investigated divergence histories and genomic signatures of adaptive divergence between benthic and pelagic morphs of Icelandic Arctic charr. Divergence histories for each of four populations were reconstructed using coalescent modelling and 14,187 single nucleotide polymorphisms. Sympatric divergence with continuous gene flow was supported in two populations while allopatric divergence with secondary contact was supported in one population; we could not differentiate between demographic models in the fourth population. We detected parallel patterns of phenotypic divergence along benthic-pelagic evolutionary trajectories among populations. Patterns of genomic differentiation between benthic and pelagic morphs were characterized by outlier loci in many narrow peaks of differentiation throughout the genome, which may reflect the eroding effects of gene flow on nearby neutral loci. We then used genome-wide association analyses to relate both phenotypic (body shape and size) and ecological (carbon and nitrogen stable isotopes) variation to patterns of genomic differentiation. Many peaks of genomic differentiation were associated with phenotypic and ecological variation in the three highly divergent populations, suggesting a genomic basis for adaptive divergence. We detected little evidence for a parallel genomic basis of differentiation as most regions and outlier loci were not shared among populations. Our results show that adaptive divergence can have varied genomic consequences in populations with relatively recent common origins, similar divergence histories, and parallel phenotypic divergence.


Subject(s)
Genome-Wide Association Study , Trout , Animals , Genome/genetics , Genomics , Iceland , Trout/genetics
6.
Brief Bioinform ; 23(4)2022 07 18.
Article in English | MEDLINE | ID: mdl-35649387

ABSTRACT

Geographic patterns of human genetic variation provide important insights into human evolution and disease. A commonly used tool to detect and describe them is principal component analysis (PCA) or the supervised linear discriminant analysis of principal components (DAPC). However, genetic features produced from both approaches could fail to correctly characterize population structure for complex scenarios involving admixture. In this study, we introduce Kernel Local Fisher Discriminant Analysis of Principal Components (KLFDAPC), a supervised non-linear approach for inferring individual geographic genetic structure that could rectify the limitations of these approaches by preserving the multimodal space of samples. We tested the power of KLFDAPC to infer population structure and to predict individual geographic origin using neural networks. Simulation results showed that KLFDAPC has higher discriminatory power than PCA and DAPC. The application of our method to empirical European and East Asian genome-wide genetic datasets indicated that the first two reduced features of KLFDAPC correctly recapitulated the geography of individuals and significantly improved the accuracy of predicting individual geographic origin when compared to PCA and DAPC. Therefore, KLFDAPC can be useful for geographic ancestry inference, design of genome scans and correction for spatial stratification in GWAS that link genes to adaptation or disease susceptibility.


Subject(s)
Polymorphism, Single Nucleotide , Supervised Machine Learning , Discriminant Analysis , Genetic Structures , Genetics, Population , Humans , Principal Component Analysis
7.
Mol Ecol Resour ; 22(6): 2183-2195, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35255178

ABSTRACT

The measurement of biodiversity at all levels of organization is an essential first step to understand the ecological and evolutionary processes that drive spatial patterns of biodiversity. Ecologists have explored the use of a large range of different summary statistics and have come to the view that information-based summary statistics, and in particular so-called Hill numbers, are a useful tool to measure biodiversity. Population geneticists, on the other hand, have focused largely on summary statistics based on heterozygosity and measures of allelic richness. However, recent studies proposed the adoption of information-based summary statistics in population genetics studies. Here, we performed a comprehensive assessment of the power of this family of summary statistics to inform regarding spatial patterns of genetic diversity and we compared it with that of traditional population genetics approaches, namely measures based on allelic richness and heterozygosity. To give an unbiased evaluation, we used three machine learning methods to test the performance of different sets of summary statistics to discriminate between spatial scenarios. We defined three distinct sets, (i) one based on allelic richness measures which included the Jaccard index, (ii) a set based on heterozygosity that included FST and (iii) a set based on Hill numbers derived from Shannon entropy, which included the recently proposed Shannon differentiation, ΔD. The results showed that the last of these performed as well or, under some specific spatial scenarios, even better than the traditional population genetics measures. Interestingly, we found that a rarely or never used genetic differentiation measure based on allelic richness, Jaccard dissimilarity (J), showed the highest discriminatory power to discriminate among spatial scenarios, followed by Shannon differentiation ΔD. We concluded, therefore, that information-based measures as well as Jaccard dissimilarity represent excellent additions to the population genetics toolkit.


Subject(s)
Genetic Variation , Genetics, Population , Alleles , Biodiversity , Genetic Drift
8.
Sci Adv ; 7(44): eabg1245, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34705499

ABSTRACT

Studying repeated adaptation can provide insights into the mechanisms allowing species to adapt to novel environments. Here, we investigate repeated evolution driven by habitat specialization in the common bottlenose dolphin. Parapatric pelagic and coastal ecotypes of common bottlenose dolphins have repeatedly formed across the oceans. Analyzing whole genomes of 57 individuals, we find that ecotype evolution involved a complex reticulated evolutionary history. We find parallel linked selection acted upon ancient alleles in geographically distant coastal populations, which were present as standing genetic variation in the pelagic populations. Candidate loci evolving under parallel linked selection were found in ancient tracts, suggesting recurrent bouts of selection through time. Therefore, despite the constraints of small effective population size and long generation time on the efficacy of selection, repeated adaptation in long-lived social species can be driven by a combination of ecological opportunities and selection acting on ancestral standing genetic variation.

9.
Proc Biol Sci ; 288(1961): 20211213, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34702078

ABSTRACT

The deep sea has been described as the last major ecological frontier, as much of its biodiversity is yet to be discovered and described. Beaked whales (ziphiids) are among the most visible inhabitants of the deep sea, due to their large size and worldwide distribution, and their taxonomic diversity and much about their natural history remain poorly understood. We combine genomic and morphometric analyses to reveal a new Southern Hemisphere ziphiid species, Ramari's beaked whale, Mesoplodon eueu, whose name is linked to the Indigenous peoples of the lands from which the species holotype and paratypes were recovered. Mitogenome and ddRAD-derived phylogenies demonstrate reciprocally monophyletic divergence between M. eueu and True's beaked whale (M. mirus) from the North Atlantic, with which it was previously subsumed. Morphometric analyses of skulls also distinguish the two species. A time-calibrated mitogenome phylogeny and analysis of two nuclear genomes indicate divergence began circa 2 million years ago (Ma), with geneflow ceasing 0.35-0.55 Ma. This is an example of how deep sea biodiversity can be unravelled through increasing international collaboration and genome sequencing of archival specimens. Our consultation and involvement with Indigenous peoples offers a model for broadening the cultural scope of the scientific naming process.


Subject(s)
Genomics , Whales , Animals , Cell Nucleus , Phylogeny , Whales/anatomy & histology , Whales/genetics
10.
Proc Biol Sci ; 287(1928): 20200318, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32486973

ABSTRACT

Metapopulation theory assumes a balance between local decays/extinctions and local growth/new colonisations. Here we investigate whether recent population declines across part of the UK harbour seal range represent normal metapopulation dynamics or are indicative of perturbations potentially threatening the metapopulation viability, using 20 years of population trends, location tracking data (n = 380), and UK-wide, multi-generational population genetic data (n = 269). First, we use microsatellite data to show that two genetic groups previously identified are distinct metapopulations: northern and southern. Then, we characterize the northern metapopulation dynamics in two different periods, before and after the start of regional declines (pre-/peri-perturbation). We identify source-sink dynamics across the northern metapopulation, with two putative source populations apparently supporting three likely sink populations, and a recent metapopulation-wide disruption of migration coincident with the perturbation. The northern metapopulation appears to be in decay, highlighting that changes in local populations can lead to radical alterations in the overall metapopulation's persistence and dynamics.


Subject(s)
Phoca , Population Dynamics , Animals , Ecosystem , Genetics, Population , Microsatellite Repeats
11.
J Hered ; 111(3): 263-276, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32347944

ABSTRACT

As species recover from exploitation, continued assessments of connectivity and population structure are warranted to provide information for conservation and management. This is particularly true in species with high dispersal capacity, such as migratory whales, where patterns of connectivity could change rapidly. Here we build on a previous long-term, large-scale collaboration on southern right whales (Eubalaena australis) to combine new (nnew) and published (npub) mitochondrial (mtDNA) and microsatellite genetic data from all major wintering grounds and, uniquely, the South Georgia (Islas Georgias del Sur: SG) feeding grounds. Specifically, we include data from Argentina (npub mtDNA/microsatellite = 208/46), Brazil (nnew mtDNA/microsatellite = 50/50), South Africa (nnew mtDNA/microsatellite = 66/77, npub mtDNA/microsatellite = 350/47), Chile-Peru (nnew mtDNA/microsatellite = 1/1), the Indo-Pacific (npub mtDNA/microsatellite = 769/126), and SG (npub mtDNA/microsatellite = 8/0, nnew mtDNA/microsatellite = 3/11) to investigate the position of previously unstudied habitats in the migratory network: Brazil, SG, and Chile-Peru. These new genetic data show connectivity between Brazil and Argentina, exemplified by weak genetic differentiation and the movement of 1 genetically identified individual between the South American grounds. The single sample from Chile-Peru had an mtDNA haplotype previously only observed in the Indo-Pacific and had a nuclear genotype that appeared admixed between the Indo-Pacific and South Atlantic, based on genetic clustering and assignment algorithms. The SG samples were clearly South Atlantic and were more similar to the South American than the South African wintering grounds. This study highlights how international collaborations are critical to provide context for emerging or recovering regions, like the SG feeding ground, as well as those that remain critically endangered, such as Chile-Peru.


Subject(s)
Genetic Variation , Whales/genetics , Animal Distribution , Animal Migration , Animals , Brazil , Chile , Feeding Behavior , Female , Genotyping Techniques , Islands , Male , Peru
12.
Ecol Lett ; 23(5): 870-880, 2020 May.
Article in English | MEDLINE | ID: mdl-32216007

ABSTRACT

Demographic compensation arises when vital rates change in opposite directions across populations, buffering the variation in population growth rates, and is a mechanism often invoked to explain the stability of species geographic ranges. However, studies on demographic compensation have disregarded the effects of temporal variation in vital rates and their temporal correlations, despite theoretical evidence that stochastic dynamics can affect population persistence in temporally varying environments. We carried out a seven-year-long demographic study on the perennial plant Arabis alpina (L.) across six populations encompassing most of its elevational range. We discovered demographic compensation in the form of negative correlations between the means of plant vital rates, but also between their temporal coefficients of variation, correlations and elasticities. Even if their contribution to demographic compensation was small, this highlights a previously overlooked, but potentially important, role of stochastic processes in stabilising population dynamics at range margins.


Subject(s)
Arabis , Plants , Demography , Population Dynamics , Stochastic Processes
13.
Mol Ecol Resour ; 19(2): 307-309, 2019 03.
Article in English | MEDLINE | ID: mdl-30811853

ABSTRACT

Inferring and quantifying recent barriers to connectivity is increasingly important for conservation and management in a world undergoing rapid environmental change. Traditional measures of genetic differentiation can take many generations to reflect a new barrier to connectivity. Although methods that use the linkage disequilibrium signal in mixed genetic samples are able to reflect recent levels of gene flow, they are not suitable for use in situations with low levels of genetic differentiation. Kinship-based methods, those that assess the spatio-temporal distribution of related individuals, have been used in this context, but a formal statistical framework for such approaches has been lacking. In this issue of Molecular Ecology Resources, Escoda, et al. adapt the assortativity coefficient, AC, to analyse the networks of kin relationships in the Pyrenean desman (Galemys pyrenaicus) across potential barriers to dispersal. Their modified AC quantifies the proportion of missing kin relationships across putative dispersal barriers with respect to the expected proportion if there was no barrier. This application highlights that AC can be used to test the null hypothesis that a putative barrier has no effect on gene flow, in which case AC is not significantly different from 0. The method represents a useful step forward in conservation genomics by developing and adapting tools to assess contemporary connectivity using genomic data.


Subject(s)
Gene Flow , Genomics , Animals , Genetics, Population , Mammals , Social Networking
14.
Evol Appl ; 11(7): 1139-1148, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30026802

ABSTRACT

We compare the two main classes of measures of population structure in genetics: (i) fixation measures such as FST,GST, and θ and (ii) allelic differentiation measures such as Jost's D and entropy differentiation. These two groups of measures quantify complementary aspects of population structure, which have no necessary relationship with each other. We focus especially on empirical aspects of population structure relevant to conservation analyses. At the empirical level, the first set of measures quantify nearness to fixation, while the second set of measures quantify relative degree of allelic differentiation. The two sets of measures do not compete with each other. Fixation measures are often misinterpreted as measures of allelic differentiation in conservation applications; we give examples and theoretical explanations showing why this interpretation can mislead. This misinterpretation has led to the mistaken belief that the absolute number of migrants determines allelic differentiation between demes when mutation rate is low; we show that in the finite island model, the absolute number of migrants determines nearness to fixation, not allelic differentiation. We show that a different quantity, the factor that controls Jost's D, is a good predictor of the evolution of the actual genetic divergence between demes at equilibrium in this model. We also show that when conservation decisions require judgments about differences in genetic composition between demes, allelic differentiation measures should be used instead of fixation measures. Allelic differentiation of fast-mutating markers can be used to rank pairs or sets of demes according to their differentiation, but the allelic differentiation at coding loci of interest should be directly measured in order to judge its actual magnitude at these loci.

15.
Evol Appl ; 11(7): 1176-1193, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30026805

ABSTRACT

Biological diversity is a key concept in the life sciences and plays a fundamental role in many ecological and evolutionary processes. Although biodiversity is inherently a hierarchical concept covering different levels of organization (genes, population, species, ecological communities and ecosystems), a diversity index that behaves consistently across these different levels has so far been lacking, hindering the development of truly integrative biodiversity studies. To fill this important knowledge gap, we present a unifying framework for the measurement of biodiversity across hierarchical levels of organization. Our weighted, information-based decomposition framework is based on a Hill number of order q = 1, which weights all elements in proportion to their frequency and leads to diversity measures based on Shannon's entropy. We investigated the numerical behaviour of our approach with simulations and showed that it can accurately describe complex spatial hierarchical structures. To demonstrate the intuitive and straightforward interpretation of our diversity measures in terms of effective number of components (alleles, species, etc.), we applied the framework to a real data set on coral reef biodiversity. We expect our framework will have multiple applications covering the fields of conservation biology, community genetics and eco-evolutionary dynamics.

16.
Methods Ecol Evol ; 8(12): 1899-1909, 2017 12.
Article in English | MEDLINE | ID: mdl-29263778

ABSTRACT

With increasing application of pooled-sequencing approaches to population genomics robust methods are needed to accurately quantify allele frequency differences between populations. Identifying consistent differences across stratified populations can allow us to detect genomic regions under selection and that differ between populations with different histories or attributes. Current popular statistical tests are easily implemented in widely available software tools which make them simple for researchers to apply. However, there are potential problems with the way such tests are used, which means that underlying assumptions about the data are frequently violated.These problems are highlighted by simulation of simple but realistic population genetic models of neutral evolution and the performance of different tests are assessed. We present alternative tests (including Generalised Linear Models [GLMs] with quasibinomial error structure) with attractive properties for the analysis of allele frequency differences and re-analyse a published dataset.The simulations show that common statistical tests for consistent allele frequency differences perform poorly, with high false positive rates. Applying tests that do not confound heterogeneity and main effects significantly improves inference. Variation in sequencing coverage likely produces many false positives and re-scaling allele frequencies to counts out of a common value or an effective sample size reduces this effect.Many researchers are interested in identifying allele frequencies that vary consistently across replicates to identify loci underlying phenotypic responses to selection or natural variation in phenotypes. Popular methods that have been suggested for this task perform poorly in simulations. Overall, quasibinomial GLMs perform better and also have the attractive feature of allowing correction for multiple testing by standard procedures and are easily extended to other designs.

17.
Genetica ; 144(6): 711-722, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27832462

ABSTRACT

In this study we combine information from landscape characteristics, demographic inference and species distribution modelling to identify environmental factors that shape the genetic distribution of the fossorial rodent Ctenomys. We sequenced the mtDNA control region and amplified 12 microsatellites from 27 populations distributed across the Iberá wetland ecosystem. Hierarchical Bayesian modelling was used to construct phylogenies and estimate divergence times. We developed species distribution models to determine what climatic variables and soil parameters predicted species presence by comparing the current to the historic and predicted future distribution of the species. Finally, we explore the impact of environmental variables on the genetic structure of Ctenomys based on current and past species distributions. The variables that consistently correlated with the predicted distribution of the species and explained the observed genetic differentiation among populations included the distribution of well-drained sandy soils and temperature seasonality. A core region of stable suitable habitat was identified from the Last Interglacial, which is projected to remain stable into the future. This region is also the most genetically diverse and is currently under strong anthropogenic pressure. Results reveal complex demographic dynamics, which have been in constant change in both time and space, and are likely linked to the evolution of the Paraná River. We suggest that any alteration of soil properties (climatic or anthropic) may significantly impact the availability of suitable habitat and consequently the ability of individuals to disperse. The protection of this core stable habitat is of prime importance given the increasing levels of human disturbance across this wetland system and the threat of climate change.


Subject(s)
Environment , Rodentia/genetics , Animals , DNA, Mitochondrial/genetics , Genetic Variation , Models, Statistical , Phylogeny
18.
BMC Genomics ; 17: 504, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27444955

ABSTRACT

BACKGROUND: The study of local adaptation processes is a very important research topic in the field of population genomics. There is a particular interest in the study of human populations because they underwent a process of rapid spatial expansion and faced important environmental changes that translated into changes in selective pressures. New mutations may have been selected for in the new environment and previously existing genetic variants may have become detrimental. Immune related genes may have been released from the selective pressure exerted by pathogens in the ancestral environment and new variants may have been positively selected due to pathogens present in the newly colonized habitat. Also, variants that had a selective advantage in past environments may have become deleterious in the modern world due to external stimuli including climatic, dietary and behavioral changes, which could explain the high prevalence of some polygenic diseases such as diabetes and obesity. RESULTS: We performed an enrichment analysis to identify gene sets enriched for signals of positive selection in humans. We used two genome scan methods, XPCLR and iHS to detect selection using a dense coverage of SNP markers combined with two gene set enrichment approaches. We identified immune related gene sets that could be involved in the protection against pathogens especially in the African population. We also identified the glycolysis & gluconeogenesis gene set, related to metabolism, which supports the thrifty genotype hypothesis invoked to explain the current high prevalence of diseases such as diabetes and obesity. Extending our analysis to the gene level, we found signals for 23 candidate genes linked to metabolic syndrome, 13 of which are new candidates for positive selection. CONCLUSIONS: Our study provides a list of genes and gene sets associated with immunity and metabolic syndrome that are enriched for signals of positive selection in three human populations (Europeans, Africans and Asians). Our results highlight differences in the relative importance of pathogens as drivers of local adaptation in different continents and provide new insights into the evolution and high incidence of metabolic syndrome in modern human populations.


Subject(s)
Adaptation, Biological/genetics , Adaptation, Biological/immunology , Biological Evolution , Energy Metabolism/genetics , Energy Metabolism/immunology , Selection, Genetic , Genetic Association Studies , Genetic Predisposition to Disease , Genetics, Population , Genome, Human , Genomics/methods , Haplotypes , Humans , Polymorphism, Single Nucleotide
19.
Proc Biol Sci ; 283(1829)2016 04 27.
Article in English | MEDLINE | ID: mdl-27122569

ABSTRACT

Conservation of ecological communities requires deepening our understanding of genetic diversity patterns and drivers at community-wide scales. Here, we use seascape genetic analysis of a diversity metric, allelic richness (AR), for 47 reef species sampled across 13 Hawaiian Islands to empirically demonstrate that large reefs high in coral cover harbour the greatest genetic diversity on average. We found that a species's life history (e.g. depth range and herbivory) mediates response of genetic diversity to seascape drivers in logical ways. Furthermore, a metric of combined multi-species AR showed strong coupling to species richness and habitat area, quality and stability that few species showed individually. We hypothesize that macro-ecological forces and species interactions, by mediating species turnover and occupancy (and thus a site's mean effective population size), influence the aggregate genetic diversity of a site, potentially allowing it to behave as an apparent emergent trait that is shaped by the dominant seascape drivers. The results highlight inherent feedbacks between ecology and genetics, raise concern that genetic resilience of entire reef communities is compromised by factors that reduce coral cover or available habitat, including thermal stress, and provide a foundation for new strategies for monitoring and preserving biodiversity of entire reef ecosystems.


Subject(s)
Anthozoa/genetics , Coral Reefs , DNA/genetics , Animals , Biodiversity , Fishes , Genetic Variation , Hawaii , Models, Genetic
20.
Mol Ecol ; 25(1): 89-103, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26314386

ABSTRACT

Identifying genomic regions targeted by positive selection has been a long-standing interest of evolutionary biologists. This objective was difficult to achieve until the recent emergence of next-generation sequencing, which is fostering the development of large-scale catalogues of genetic variation for increasing number of species. Several statistical methods have been recently developed to analyse these rich data sets, but there is still a poor understanding of the conditions under which these methods produce reliable results. This study aims at filling this gap by assessing the performance of genome-scan methods that consider explicitly the physical linkage among SNPs surrounding a selected variant. Our study compares the performance of seven recent methods for the detection of selective sweeps (iHS, nSL, EHHST, xp-EHH, XP-EHHST, XPCLR and hapFLK). We use an individual-based simulation approach to investigate the power and accuracy of these methods under a wide range of population models under both hard and soft sweeps. Our results indicate that XPCLR and hapFLK perform best and can detect soft sweeps under simple population structure scenarios if migration rate is low. All methods perform poorly with moderate-to-high migration rates, or with weak selection and very poorly under a hierarchical population structure. Finally, no single method is able to detect both starting and nearly completed selective sweeps. However, combining several methods (XPCLR or hapFLK with iHS or nSL) can greatly increase the power to pinpoint the selected region.


Subject(s)
Evolution, Molecular , Genetics, Population/methods , Models, Genetic , Selection, Genetic , Sequence Analysis, DNA/methods , Computer Simulation , Genetic Linkage , Genotype , Haplotypes , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...