Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Water Res ; 178: 115855, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32375109

ABSTRACT

This paper aims to elucidate the role of extracellular polymeric substances (EPS) in regulating anion and cation concentrations and toxicity towards microorganisms in anaerobic granular sludges adapted to low (0.22 M of Na+) and high salinity (0.87 M of Na+). The ion exchange properties of EPS were studied with a novel approach, where EPS were entangled with an inert binder (PVDF-HFP) to form a membrane and characterized in an electrodialysis cell. With a mixture of NaCl and KCl salts the EPS membrane was shown to act as a cation exchange membrane (CEM) with a current efficiency of ∼80%, meaning that EPS do not behave as ideal CEM. Surprisingly, the membrane had selectivity for transport of K+ compared to Na+ with a separation factor ( [Formula: see text] ) of 1.3. These properties were compared to a layer prepared from a model compound of EPS (alginate) and a commercial CEM. The alginate layer had a similar current efficiency (∼80%.), but even higher [Formula: see text] of 1.9, while the commercial CEM did not show selectivity towards K+ or Na+, but exhibited the highest current efficiency of 92%. The selectivity of EPS and alginate towards K+ transport has interesting potential applications for ion separation from water streams and should be further investigated. The anion repelling and cation binding properties of EPS in hydrated and dehydrated granules were further confirmed with microscopy (SEM-EDX, epifluorescence) and ion chromatography (ICP-OES, IC) techniques. Results of specific methanogenic activity (SMA) tests conducted with 0.22 and 0.87 M Na+ adapted granular sludges and with various monovalent salts suggested that ions which are preferentially transported by EPS are also more toxic towards methanogenic cells.


Subject(s)
Extracellular Polymeric Substance Matrix , Sewage , Anaerobiosis , Cations , Sodium Chloride
2.
Water Res ; 147: 142-151, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30308373

ABSTRACT

Increasing amounts of saline (waste)water with high concentrations of organic pollutants are generated globally. In the anaerobic (waste)water treatment domain, high salt concentrations are repeatedly reported to inhibit methanogenic activity and strategies to overcome this toxicity are needed. Current research focuses on the use of potential osmolyte precursor compounds for osmotic stress alleviation in granular anaerobic sludges upon exposure to hypersalinity shocks. Glutamic acid, aspartic acid, lysine, potassium, gelatine, and tryptone were tested for their potential to alleviate osmotic stress in laboratory grown and full - scale granular sludge. The laboratory grown granular sludge was adapted to 5 (R5) and 20 (R20) g Na+/L. Full-scale granular sludge was obtained from internal circulation reactors treating tannery (waste)water with influent conductivity of 29.2 (Do) and 14.1 (Li) mS/cm. In batch experiments which focused on specific methanogenic activity (SMA), R5 granular sludge was exposed to a hypersalinity shock of 20 g Na+/L. The granular sludge of Do and Li was exposed to a hypersalinity shock of 10 g Na+/L with sodium acetate as the sole carbon source. The effects on R20 granular sludge were studied at the salinity level to which the sludge was already adapted, namely 20 g Na+/L. Dosing of glutamic acid, aspartic acid, gelatine, and tryptone resulted in increased SMA compared to only acetate fed batches. In batches with added glutamic acid, the SMA increased by 115% (Li), 35% (Do) and 9% (R20). With added aspartic acid, SMA increased by 72% (Li), 26% (Do), 12% (R5) and 7% (R20). The addition of tryptone resulted in SMA increases of 36% (R5), 17% (R20), 179% (Li), and 48% (Do), whereas added gelatine increased the SMA by 30% (R5), 14% (R20), 23% (Li), and 13% (Do). The addition of lysine, meanwhile, gave negative effects on SMA of all tested granular sludges. Potassium at sea water Na/K ratio (27.8 w/w) had a slight positive effect on SMA of Do (7.3%) and Li (10.1%), whereas at double the sea water ratio (13.9% w/w) had no pronounced positive effect. R20 granular sludge was also exposed to hyposalinity shock from 20 down to 5 g Na+/L. Glutamate and N-acetyl-ß-lysine were excreted by microbial consortium in anaerobic granular sludge adapted to 20 g Na+/L upon this exposure to hyposalinity. A potential consequence when applying these results is that saline streams containing specific and hydrolysable proteins can be anaerobically treated without additional dosing of osmolytes.


Subject(s)
Sewage , Waste Disposal, Fluid , Anaerobiosis , Bioreactors , Osmotic Pressure
3.
Environ Technol ; 39(10): 1250-1259, 2018 May.
Article in English | MEDLINE | ID: mdl-28475436

ABSTRACT

Methanogenic biomass plays a key role with regard to methane production during anaerobic bioconversion of organic substrates. In this study, the effect of two different acclimated inocula on digestion performances was investigated by means of anaerobic batch tests on untreated and sonicated waste-activated sludge. Organics solubilization and removal kinetics, the abundance and physiological conditions of archaeal cells on ultimate methane yield were evaluated. The simultaneous presence of Methanosarcina and Methanosaeta in the archaeal biomass, the higher initial archaeal cells relative abundance and their occurrence in the aggregated forms were the main factors positively affecting the conversion into methane. The presence of the acclimated inoculum at the start-up influenced positively the methane improvement due to sonication, and the methane-specific production increased from 0.335 ± 0.03 to 0.420 ± 0.05 Nm3/kg VSfed. Moreover, the better physiological state of methanogens permitted to appreciate the effect of hydrolysis improvement by ultrasound pretreatment.


Subject(s)
Bioreactors , Methane/chemistry , Sewage , Acclimatization , Anaerobiosis , Biomass
4.
Water Res ; 128: 293-303, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29107914

ABSTRACT

It is commonly accepted that high salt concentrations negatively affect microbial activity in biological wastewater treatment reactors such as upflow anaerobic sludge blanket (UASB) reactors. Microbial aggregation in such reactors is equally important. It is well documented that anaerobic granules, when exposed to high salinity become weak and disintegrate, causing wash-out, operational problems and decreasing process performance. In this research, the possibility of microbial granule formation from dispersed biomass was investigated at salinity levels of 5 and 20 g Na+/L. High removal efficiencies of soluble influent organics were achieved at both salinity levels and this was accompanied by fast and robust formation of microbial granules. The process was found to be stable for the entire operational period of 217 days. As far as we know this is the first time it has been demonstrated that stable granule formation is possible at a salinity level as high as 20 g Na+/L. Methanosaeta was identified as the dominant methanogen at both salinity levels. Streptococcus spp. and bacteria belonging to the family Lachnospiraceae were identified as the dominant microbial population at 5 and 20 and g Na+/L, respectively.


Subject(s)
Bioreactors/microbiology , Salinity , Waste Management/methods , Anaerobiosis , Bacteria , Methanosarcinaceae/isolation & purification , Sewage , Sodium Chloride , Wastewater
5.
Water Res ; 121: 61-71, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28511041

ABSTRACT

For the anaerobic biological treatment of saline wastewater, Anaerobic Digestion (AD) is currently a possibility, even though elevated salt concentrations can be a major obstacle. Anaerobic consortia and especially methanogenic archaea are very sensitive to fluctuations in salinity. When working with Upflow Sludge Blanket Reactor (UASB) technology, in which the microorganisms are aggregated and retained in the system as a granular biofilm, high sodium concentration negatively affects aggregation and consequently process performances. In this research, we analysed the structure of the biofilm and granules formed during the anaerobic treatment of high salinity (at 10 and 20 g/L of sodium) synthetic wastewater at lab scale. The acclimated inoculum was able to accomplish high rates of organics removal at all the salinity levels tested. 16S rRNA gene clonal analysis and Fluorescence In Situ Hybridization (FISH) analyses identified the acetoclastic Methanosaeta harundinacea as the key player involved acetate degradation and microbial attachment/granulation. When additional calcium (1 g/L) was added to overcome the negative effect of sodium on microbial aggregation, during the biofilm formation process microbial attachment and acetate degradation decreased. The same result was observed on granules formation: while calcium had a positive effect on granules strength when added to UASB reactors, Methanosaeta filaments were not present and the degradation of the partially acidified substrate was negatively influenced. This research demonstrated the possibility to get granulation at high salinity, bringing to the forefront the importance of a selection towards Methanosaeta cells growing in filamentous form to obtain strong and healthy granules.


Subject(s)
Biofilms , Salinity , Waste Disposal, Fluid , Anaerobiosis , Bioreactors , In Situ Hybridization, Fluorescence , RNA, Ribosomal, 16S , Sewage
6.
FEMS Microbiol Ecol ; 91(5)2015 May.
Article in English | MEDLINE | ID: mdl-25764466

ABSTRACT

Thermophilic bacteria have been isolated from several terrestrial, marine and industrial environments. Anaerobic digesters treating organic wastes are often an important source of these microorganisms, which catalyze a wide array of metabolic processes. Moreover, organic wastes are primarily composed of proteins, whose degradation is often incomplete. Coprothermobacter spp. are proteolytic anaerobic thermophilic microbes identified in several studies focused on the analysis of the microbial community structure in anaerobic thermophilic reactors. They are currently classified in the phylum Firmicutes; nevertheless, several authors showed that the Coprothermobacter group is most closely related to the phyla Dictyoglomi and Thermotoga. Since only a few proteolytic anaerobic thermophiles have been characterized so far, this microorganism has attracted the attention of researchers for its potential applications with high-temperature environments. In addition to proteolysis, Coprothermobacter spp. showed several metabolic abilities and may have a biotechnological application either as source of thermostable enzymes or as inoculum in anaerobic processes. Moreover, they can improve protein degradation by establishing a syntrophy with hydrogenotrophic archaea. To gain a better understanding of the phylogenesis, metabolic capabilities and adaptations of these microorganisms, it is of importance to better define the role in thermophilic environments and to disclose properties not yet investigated.


Subject(s)
Fermentation/genetics , Peptide Hydrolases/genetics , Thermoanaerobacter , Bioreactors/microbiology , Biotechnology , Ecology , Fermentation/physiology , Genome, Bacterial/genetics , Peptide Hydrolases/metabolism , Phylogeny , Proteolysis , RNA, Ribosomal, 16S/genetics , Temperature , Thermoanaerobacter/classification , Thermoanaerobacter/genetics , Thermoanaerobacter/metabolism
7.
Water Res ; 68: 498-509, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25462756

ABSTRACT

Thermal hydrolysis pretreatment coupled with Thermophilic Anaerobic Digestion (TAD) for Waste Activated Sludge (WAS) treatment is a promising combination to improve biodegradation kinetics during stabilization. However, to date there is a limited knowledge of the anaerobic biomass composition and its impact on TAD process performances. In this study, the structure and dynamics of the microbial communities selected in two semi-continuous anaerobic digesters, fed with untreated and thermal pretreated sludge, were investigated. The systems were operated for 250 days at different organic loading rate. 16S rRNA gene clonal analysis and Fluorescence In Situ Hybridization (FISH) analyses allowed us to identify the majority of bacterial and archaeal populations. Proteolytic Coprothermobacter spp. and hydrogenotrophic Methanothermobacter spp. living in strict syntrophic association were found to dominate in TAD process. The establishment of a syntrophic proteolytic pathway was favoured by the high temperature of the process and enhanced by the thermal pretreatment of the feeding sludge. Proteolytic activity, alone or with thermal pretreatment, occurred during TAD as proven by increasing concentration of soluble ammonia and soluble COD (sCOD) during the process. However, the availability of a readily biodegradable substrate due to pretreatment allowed to significant sCOD removals (more than 55%) corresponding to higher biogas production in the reactor fed with thermal pretreated sludge. Microbial population dynamics analysed by FISH showed that Coprothermobacter and Methanothermobacter immediately established a stable syntrophic association in the reactor fed with pretreated sludge in line with the overall improved TAD performances observed under these conditions.


Subject(s)
Archaea/genetics , Bacteria/genetics , Sewage/microbiology , Water Microbiology , Anaerobiosis , Archaea/classification , Archaea/metabolism , Bacteria/classification , Bacteria/metabolism , Biodegradation, Environmental , Biomass , Bioreactors/microbiology , Hot Temperature , In Situ Hybridization, Fluorescence , Methane/metabolism , Methanobacteriaceae/genetics , Methanobacteriaceae/metabolism , Molecular Sequence Data , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
8.
Environ Sci Pollut Res Int ; 22(10): 7339-48, 2015 May.
Article in English | MEDLINE | ID: mdl-24875310

ABSTRACT

Anaerobic digestion (AD) is one of the few sustainable technologies that both produce energy and treat waste streams. Driven by a complex and diverse community of microbes, AD may be affected by different factors, many of which also influence the composition and activity of the microbial community. In this study, the biodiversity of microbial populations in innovative mesophilic/thermophilic temperature-phased AD of sludge was evaluated by means of fluorescence in situ hybridization (FISH). The increase of digestion temperature drastically affected the microbial composition and selected specialized biomass. Hydrogenotrophic Methanobacteriales and the protein fermentative bacterium Coprothermobacter spp. were identified in the thermophilic anaerobic biomass. Shannon-Weaver diversity (H') and evenness (E) indices were calculated using FISH data. Species richness was lower under thermophilic conditions compared with the values estimated in mesophilic samples, and it was flanked by similar trend of the evenness indicating that thermophilic communities may be therefore more susceptible to sudden changes and less prompt to adapting to operative variations.


Subject(s)
Bacteria/metabolism , Biodiversity , Sewage/microbiology , Anaerobiosis , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Biodegradation, Environmental , Biomass , Bioreactors/microbiology , In Situ Hybridization, Fluorescence , Temperature
9.
Water Sci Technol ; 69(8): 1728-34, 2014.
Article in English | MEDLINE | ID: mdl-24759535

ABSTRACT

The requirement for enhanced stabilization processes to obtain a more stable, pathogen-free sludge for agricultural use is an increasing challenge to comply with in the waste hierarchy. With this in mind, the Routes European project ('Novel processing routes for effective sewage sludge management') is addressed to assess innovative solutions with the aim of maximizing sludge quality and biological stability. In order to increase anaerobic stabilization performances, the sequential anerobic/aerobic process and the thermophilic digestion process, with or without integration of the thermal hydrolysis pre-treatment, were investigated as regards the effect on sludge stabilization, dewaterability and digestion performances. Thermal pre-treatment improved anaerobic digestion in terms of volatile solids reduction and biogas production, but digestate dewaterability worsened. Fluorescence in situ hybridization (FISH) quantification showed an increase of methanogens consistent with the increase of biogas produced. The aerobic post-treatment after mesophilic digestion had a beneficial effect on dewaterability and stability of the digested sludge even if was with a reduction of the potential energy recovery.


Subject(s)
Bioreactors , Sewage/chemistry , Waste Disposal, Fluid , Aerobiosis , Anaerobiosis
10.
J Hand Surg Eur Vol ; 39(9): 994-1000, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24664163

ABSTRACT

Syndactyly release may require skin grafting to fill the skin defects, which might lead to complications or poor cosmetic outcomes. A simple graftless technique for syndactyly release with a hyaluronic acid (HA) scaffold used to cover the bare areas is described. Between 2008 and 2011, release of 26 webs in 23 patients was performed. All skin defects were covered with Hyalomatrix(®) PA. One patient was excluded due to early post-operative infection that required HA scaffold removal before its integration. Web creep, secondary deformities, scar quality, and patient and parental satisfaction were assessed. Mean follow-up of the group of 22 patients was 24 months. There were no secondary deformities and minimal degree of web creep. All patients had close to normal pigmentation and good pliability at the sites of scaffold application. The results confirm the use of a HA scaffold as a promising alternative to skin grafting in syndactyly release surgery.


Subject(s)
Guided Tissue Regeneration/methods , Hyaluronic Acid , Skin/physiopathology , Syndactyly/physiopathology , Syndactyly/surgery , Tissue Scaffolds , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Male , Patient Satisfaction , Postoperative Complications/etiology , Skin Transplantation , Wound Healing/physiology
11.
Bioresour Technol ; 159: 207-14, 2014 May.
Article in English | MEDLINE | ID: mdl-24650534

ABSTRACT

High-frequency ultrasounds have recently gained interest as oxidative technique for sonochemical degradation of organic contaminants in water. In this study an innovative approach applying 200 kHz ultrasounds to improve both sludge anaerobic biodegradability and decontamination is proposed. Digestion tests were performed on batch reactors fed either with untreated or sonicated sludge, at different food/inoculum (F/I) ratio, in the range 0.3-0.9. First order kinetic highlighted a decreasing trend of the hydrolysis rate by increasing F/I, both for untreated and sonicated sludge. Positive effect of ultrasounds on specific biogas production was evident, but the conversion rate for pretreated sludge was strongly affected by F/I, and decreased by increasing F/I. Anionic surfactants anaerobic removal occurred in all tests, but the effect of ultrasounds was significant only at F/I=0.3. By pretreating sludge with high frequency ultrasounds, low F/I was the ideal ratio improving both sludge anaerobic digestion and decontamination.


Subject(s)
Bacteria/metabolism , Sewage/microbiology , Surface-Active Agents/isolation & purification , Ultrasonics/methods , Alkanesulfonic Acids/metabolism , Anaerobiosis , Biodegradation, Environmental , Biofuels , Biological Oxygen Demand Analysis , Biopolymers/analysis , Hydrolysis , Kinetics , Solubility , Volatilization
12.
Bioresour Technol ; 110: 43-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22326112

ABSTRACT

In this work the potential of high frequency ultrasounds as pretreatment for sludge anaerobic digestion has been assessed. Irradiation with 200kHz ultrasounds was efficient in disintegrating the floc structure increasing the available fraction of soluble organic matter (up to seven times at 25,000kJ/kgTS). Batch anaerobic digestion tests were carried out on lab-scale reactors fed either with untreated or disintegrated sludge inoculated with anaerobic sludge, at different feed/inoculum ratio (F/I=0.5 and 1). Degradation of particulate matter, biogas production and related microbial community composition (estimated by fluorescence in situ hybridization, FISH) were investigated. Sludge ultrasounds pretreatment led to an overall improvement of the digestion performances, with a maximum biogas gain of 40% at F/I=0.5. FISH showed a key-role of Methanosarcina spp. in the main reactions of biogas synthesis.


Subject(s)
Sewage/microbiology , Ultrasonics , Anaerobiosis , In Situ Hybridization, Fluorescence
13.
Hand Clin ; 19(4): 631-48, vii, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14596554

ABSTRACT

The authors report a simple chart that offers a comprehensive picture of spasticity of the upper limb and provides a more objective method of recording data. Distinction is made between fixed postures and the residual active range of motion at the shoulder and elbow. The presence and function of the muscles can be identified easily on dynamic EMG studies, which are essential for understanding the degree of spasticity and dyssynergy related to a single muscle. When spasticity of the upper arm is managed with a global approach and objectives are defined clearly in advance with the patient and caregivers, treatment of shoulder and elbow deformities can achieve important results for personal hygiene or functional targets.


Subject(s)
Cerebral Palsy/surgery , Elbow/surgery , Shoulder/surgery , Activities of Daily Living , Adolescent , Adult , Aged , Cerebral Palsy/physiopathology , Disability Evaluation , Elbow/physiopathology , Electromyography , Female , Hemiplegia/physiopathology , Hemiplegia/surgery , Humans , Male , Middle Aged , Preoperative Care , Quadriplegia/physiopathology , Quadriplegia/surgery , Rotation , Shoulder/physiopathology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...