Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Virol ; 75(1): 115-24, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11119580

ABSTRACT

In all retroviruses analyzed to date (except for the spumaretroviruses), the Zn(2+)-coordinating residues of nucleocapsid (NC) perform or assist in crucial reactions necessary to complete the retrovirus life cycle. Six replication-defective mutations have been engineered in the two NC Zn(2+) fingers (ZFs) of simian immunodeficiency virus [SIV(Mne)] that change or delete specific Zn(2+)-interacting Cys residues and were studied by using electron microscopy, reversed-phase high-performance liquid chromatography, immunoblotting, and RNA quantification. We focused on phenotypes of produced particles, specifically morphology, Gag polyprotein processing, and genomic RNA packaging. Phenotypes were similar among viruses containing a point or deletion mutation involving the same ZF. Mutations in the proximal ZF (ZF1) resulted in near-normal Gag processing and full-length genomic RNA incorporation and were most similar to wild-type (WT) virions with electron-dense, conical cores. Mutation of the distal ZF, as well as point mutations in both ZFs, resulted in more unprocessed Gag proteins than a deletion or point mutation in ZF1, with an approximate 30% reduction in levels of full-length genomic RNA in virions. These mutant virions contained condensed cores; however, the cores typically appeared less electron dense and more rod shaped than WT virions. Surprisingly, deletion of both ZFs, including the basic linker region between the ZFs, resulted in the most efficient Gag processing. However, genomic RNA packaging was approximately 10% of WT levels, and those particles produced were highly abnormal with respect to size and core morphology. Surprisingly, all NC mutations analyzed demonstrated a significant loss of processed NC in virus particles, suggesting that Zn(2+)-coordinated NC is protected from excessive proteolytic cleavage. Together, these results indicate that Zn(2+) coordination is important for correct Gag precursor processing and NC protein stability. Additionally, SIV particle morphology appears to be the result of proper and complete Gag processing and relies less on full-length genomic RNA incorporation, as dictated by the Zn(2+) coordination in the ZFs of the NC protein.


Subject(s)
Gene Products, gag/metabolism , Nucleocapsid/physiology , Simian Immunodeficiency Virus/physiology , Virion/physiology , Zinc/metabolism , Amino Acid Sequence , Animals , Chromatography, High Pressure Liquid , Molecular Sequence Data , Nucleocapsid/chemistry , Structure-Activity Relationship , Terminal Repeat Sequences
2.
Virology ; 278(1): 111-21, 2000 Dec 05.
Article in English | MEDLINE | ID: mdl-11112487

ABSTRACT

Our previous biochemical studies of HIV-1 and MuLV virions isolated and identified mature Gag products, HIV-1 p6(Gag) and MuLV p12(Gag), that were conjugated to a single ubiquitin. To study the importance of the monoubiquitination of Gag, a series of lysine to arginine mutants were constructed that eliminated ubiquitination at one or both of the lysines in HIV-1(NL4-3) p6(Gag) and both lysines in Moloney MuLV p12(Gag). HPLC and immunoblot analysis of the HIV-1 mutants demonstrated that either of the lysines in p6(Gag), K27 or K33, could be monoubiquitinated. However, infectivity assays showed that monoubiquitination of HIV-1 p6(Gag) or MuLV p12(Gag) is not required for viral replication in vitro. Pulse-chase radiolabeling of HIV-1-producing cells revealed that monoubiquitination of p6(Gag) does not affect the short-term release of virus from the cell, the maturation of Pr55(Gag), or the sensitivity of these processes to proteasome inhibitors. Experiments with protease-deficient HIV-1 showed that Pr55(Gag) can be monoubiquitinated, suggesting that p6(Gag) is first modified as a domain within Gag. Examination of the proteins inside an HIV-1 mutant found that free ubiquitin was incorporated into the virions in the absence of the lysines in p6(Gag), showing that the ubiquitin inside the virus is not initially brought in as a p6(Gag) conjugate. Although our results establish that monoubiquitination of p6(Gag) and p12(Gag) is not required for viral replication in vitro, this modification may be a by-product of interactions between Gag and cellular proteins during assembly and budding.


Subject(s)
HIV-1/metabolism , Moloney murine leukemia virus/metabolism , Ubiquitins/metabolism , Amino Acid Sequence , Amino Acid Substitution , Animals , Arginine/genetics , Cell Line , Chromatography, High Pressure Liquid , Gene Products, gag/analysis , Gene Products, gag/genetics , Gene Products, gag/metabolism , HIV Protease/deficiency , HIV Protease/genetics , HIV-1/enzymology , HIV-1/pathogenicity , Humans , Immunoblotting , Lysine/genetics , Mice , Molecular Sequence Data , Moloney murine leukemia virus/pathogenicity , Mutagenesis, Site-Directed , Protein Precursors/metabolism , Ubiquitins/analysis , Virus Replication , gag Gene Products, Human Immunodeficiency Virus
3.
J Virol ; 73(10): 8185-95, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10482569

ABSTRACT

Mutagenesis studies have shown that retroviral nucleocapsid (NC) protein Zn(2+) fingers (-Cys-X(2)-Cys-X(4)-His-X(4)-Cys- [CCHC]) perform multiple functions in the virus life cycle. Moloney murine leukemia virus mutants His 34-->Cys (CCCC) and Cys 39-->His (CCHH) were able to package their genomes normally but were replication defective. Thermal dissociation experiments showed that the CCHH mutant was not defective in genomic RNA dimer structure. Primer tRNA placement on the viral genome and the ability of the tRNA to function in reverse transcription initiation in vitro also appear normal. Some "full-length" DNA copies of the viral genome were synthesized in mutant virus-infected cells. The CCCC and CCHH mutants produced these DNA copies at greatly reduced levels. Circle junction fragments, amplified from two-long-terminal-repeat viral DNA (vDNA) by PCR, were cloned and characterized. Remarkably, it was discovered that vDNA isolated from cells infected with mutant virions had a wide variety of abnormalities at the site at which the two ends of the linear precursor had been ligated to form the circle (i.e., the junction between the 5' end of U3 and the 3' end of U5). In some molecules, bases were missing from regions corresponding to the U3 and U5 linear vDNA termini; in others, the viral sequences extended either beyond the U5 sequences into the primer-binding site and 5' leader or beyond the U3 sequences into the polypurine tract into the env coding region. Still other molecules contained nonviral sequences between the linear vDNA termini. Such defective genomes would certainly be unsuitable substrates for integration. Thus, strict conservation of the CCHC structure in NC is required for infection events prior to and possibly including integration.


Subject(s)
Capsid/genetics , Leukemia Virus, Murine/physiology , Point Mutation , Retroviridae Infections/virology , Tumor Virus Infections/virology , Virus Replication/genetics , Animals , Mice , Mutagenesis, Site-Directed , Zinc Fingers
4.
Virology ; 256(1): 92-104, 1999 Mar 30.
Article in English | MEDLINE | ID: mdl-10087230

ABSTRACT

The retroviral nucleocapsid (NC) protein contains highly conserved amino acid sequences (-Cys-X2-Cys-X4-His-X4-Cys-) designated retroviral (CCHC) Zn2+ fingers. The NC protein of murine leukemia viruses contains one NC Zn2+ finger and mutants that were competent in metal binding (CCCC and CCHH) packaged wild-type levels of full-length viral RNA but were not infectious. These studies were extended to human immunodeficiency virus type 1 (HIV-1), a virus with two NC Zn2+ fingers. Viruses with combinations of CCHC, CCCC, and CCHH Zn2+ fingers in each position of HIV-1 NC were characterized. Mutant particles contained the normal complement of processed viral proteins. Four mutants packaged roughly wild-type levels of genomic RNA, whereas the remaining mutants packaged reduced levels. Virions with mutated C-terminal position NC fingers were replication competent. One interesting mutant, containing a CCCC Zn2+ finger in the N-terminal position of NC, packaged wild-type levels of viral RNA and showed approximately 5% wild-type levels of infectivity when examined in CD4-expressing HeLa cells containing an HIV-1 LTR/beta-galactosidase construct. However, this particular mutant was replication defective in H9 cells; all other mutants were replication defective over the 8-week course of the assay. Two long terminal repeat viral DNA species could be detected in the CCCC mutant but not in any of the other replication-defective mutants. These studies show that the N-terminal Zn2+ finger position is more sensitive to alterations than the C-terminal position with respect to replication. Additionally, the retroviral (CCHC) NC Zn2+ finger is required for early infection processes. The evolutionary pressure to maintain CCHC NC Zn2+ fingers depends mainly on its function in infection processes, in addition to its function in genome packaging.


Subject(s)
HIV-1/physiology , HIV-1/pathogenicity , Nucleocapsid/metabolism , Amino Acid Sequence , Amino Acid Substitution , Base Sequence , Cell Line , Conserved Sequence , DNA Primers , HIV Long Terminal Repeat , HIV-1/genetics , HeLa Cells , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Nucleocapsid/chemistry , Nucleocapsid/genetics , Polymerase Chain Reaction , Transfection , Virus Replication , Zinc Fingers
5.
Virology ; 253(2): 259-70, 1999 Jan 20.
Article in English | MEDLINE | ID: mdl-9918884

ABSTRACT

All retroviruses (except the spumaretroviruses) contain a nucleocapsid (NC) protein that encodes one or two copies of the Zn2+-finger sequence -Cys-X2-Cys-X4-His-X4-Cys-. This region has been shown to be essential for recognition and packaging of the genomic RNA during virion particle assembly. Additionally, this region has been shown to be involved in early infection events in a wide spectrum of retroviruses, including mammalian type C [e.g., murine leukemia virus (MuLV)], human immunodeficiency virus type 1 (HIV-1), Rous sarcoma virus, and other retroviruses. Mutations in the two Zn2+-fingers of the NC protein of simian immunodeficiency virus strain Mne [SIV(Mne)] have been generated. The resulting virions contained the normal complement of processed viral proteins with densities indistinguishable from wild-type SIV(Mne). All of the mutants had electron micrograph morphologies similar to those of immature particles observed in wild-type preparations. RNA packaging was less affected by mutations in the NC protein of SIV(Mne) than has been observed for similar mutants in the MuLV and HIV-1 systems. Nevertheless, in vitro replication of SIV(Mne) NC mutants was impaired to levels comparable to those observed for MuLV and HIV-1 NC mutants; replication defective NC mutants are typically 10(5)- to 10(6)-fold less infectious than similar levels of wild-type virus. One mutant, DeltaCys33-Cys36, was also found to be noninfectious in vivo when mutant virus was administered intravenously to a pig-tailed macaque. NC mutations can therefore be used to generate replication defective virions for candidate vaccines in the SIV macaque model for primate lentiviral diseases.


Subject(s)
Mutation , Nucleocapsid Proteins/genetics , Simian Immunodeficiency Virus/genetics , Zinc Fingers , Amino Acid Sequence , Animals , Cell Line, Transformed , Cysteine , Humans , Mice , Molecular Sequence Data , Nucleic Acid Hybridization , Polymerase Chain Reaction/methods , RNA, Viral/analysis , Simian Immunodeficiency Virus/physiology , Simian Immunodeficiency Virus/ultrastructure , Virion , Virus Replication
6.
J Virol ; 73(1): 19-28, 1999 Jan.
Article in English | MEDLINE | ID: mdl-9847302

ABSTRACT

The p6(Gag) protein of human immunodeficiency virus type 1 (HIV-1) is produced as the carboxyl-terminal sequence within the Gag polyprotein. The amino acid composition of this protein is high in hydrophilic and polar residues except for a patch of relatively hydrophobic amino acids found in the carboxyl-terminal 16 amino acids. Internal cleavage of p6(Gag) between Y36 and P37, apparently by the HIV-1 protease, removes this hydrophobic tail region from approximately 30% of the mature p6(Gag) proteins in HIV-1MN. To investigate the importance of this cleavage and the hydrophobic nature of this portion of p6(Gag), site-directed mutations were made at the minor protease cleavage site and within the hydrophobic tail. The results showed that all of the single-amino-acid-replacement mutants exhibited either reduced or undetectable cleavage at the site yet almost all were nearly as infectious as wild-type virus, demonstrating that processing at this site is not important for viral replication. However, one exception, Y36F, was 300-fold as infectious the wild type. In contrast to the single-substitution mutants, a virus with two substitutions in this region of p6(Gag), Y36S-L41P, could not infect susceptible cells. Protein analysis showed that while the processing of the Gag precursor was normal, the double mutant did not incorporate Env into virus particles. This mutant could be complemented with surface glycoproteins from vesicular stomatitis virus and murine leukemia virus, showing that the inability to incorporate Env was the lethal defect for the Y36S-L41P virus. However, this mutant was not rescued by an HIV-1 Env with a truncated gp41(TM) cytoplasmic domain, showing that it is phenotypically different from the previously described MA mutants that do not incorporate their full-length Env proteins. Cotransfection experiments with Y36S-L41P and wild-type proviral DNAs revealed that the mutant Gag dominantly blocked the incorporation of Env by wild-type Gag. These results show that the Y36S-L41P p6(Gag) mutation dramatically blocks the incorporation of HIV-1 Env, presumably acting late in assembly and early during budding.


Subject(s)
Gene Products, env/physiology , Gene Products, gag/physiology , HIV-1/physiology , Virus Assembly , Amino Acid Sequence , Gene Products, env/chemistry , Gene Products, gag/chemistry , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Structure-Activity Relationship , Virus Replication
7.
J Virol ; 70(4): 2593-7, 1996 Apr.
Article in English | MEDLINE | ID: mdl-8642691

ABSTRACT

The effect of changing zinc (Zn2+)-coordinating residues in the nucleocapsid protein of Moloney murine leukemia virus was investigated by introducing a His-34-to-Cys or Cys-39-to-His mutation into the putative Zn2+ finger. Mutant virions contained normal levels of properly processed Gag and Env proteins and wild-type levels of full-length viral RNA. However, the specific infectivity of the mutants was approximately 4 x 10(-4) that of wild-type particles. They were probably noninfectious because of the inability of the particles to synthesize cDNA transcripts, since full-length viral DNA could not be detected in Hirt supernatants of NIH 3T3 cells infected with the CCCC or CCHH virus. These mutants will provide an extremely valuable tool for analysis of the role of retroviral Zn2+ fingers in infection processes, independent of viral RNA recognition and packaging.


Subject(s)
Capsid/physiology , Moloney murine leukemia virus/physiology , Viral Core Proteins/physiology , Zinc Fingers/physiology , Zinc/physiology , 3T3 Cells , Amino Acid Sequence , Animals , Base Sequence , Capsid/genetics , Cell Line , DNA, Viral , Humans , Mice , Molecular Sequence Data , Moloney murine leukemia virus/genetics , Moloney murine leukemia virus/pathogenicity , Mutagenesis, Site-Directed , RNA, Viral/metabolism , Viral Core Proteins/genetics , Virus Replication/genetics , Virus Replication/physiology , Zinc Fingers/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...