Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(7): e0235815, 2020.
Article in English | MEDLINE | ID: mdl-32673351

ABSTRACT

Monoclonal antibodies (mAbs) for therapeutic applications should be as similar to native human antibodies as possible to minimize their immunogenicity in patients. Several transgenic animal platforms are available for the generation of fully human mAbs. Attributes such as specificity, efficacy and Chemistry, Manufacturing and Controls (CMC) developability of antibodies against a specific target are typically established for antibodies obtained from one platform only. In this study, monoclonal antibodies (mAbs) cross-reactive against human and cynomolgus LAMP1 were derived from the human immunoglobulin transgenic TRIANNI mouse and OmniChicken® platforms and assessed for their specificity, sequence diversity, ability to bind to and internalize into tumor cells, expected immunogenicity and CMC developability. Our results show that the two platforms were complementary at providing a large diversity of mAbs with respect to epitope coverage and antibody sequence diversity. Furthermore, most antibodies originating from either platform exhibited good manufacturability characteristics.


Subject(s)
Antibodies, Monoclonal/immunology , Epitopes/immunology , Lysosomal Membrane Proteins/immunology , Animals , Animals, Genetically Modified , Antibodies, Monoclonal/chemistry , Chickens , HEK293 Cells , Humans , Immunization , Macaca fascicularis , Mice , Models, Molecular
2.
Sci Rep ; 9(1): 18688, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31822703

ABSTRACT

Because of their favorable properties as macromolecular drugs, antibodies are a very successful therapeutic modality for interfering with disease-relevant targets in the extracellular space or at the cell membrane. However, a large number of diseases involve cytosolic targets and designing antibodies able to efficiently reach intracellular compartments would expand the antibody-tractable conditions. Here, we genetically fused cell penetrating peptides (CPPs) at various positions to an antibody targeting cancer cells, evaluated the developability features of the resulting antibody-peptide fusions and the ability of selected constructs to reach the cytosol. We first determined positions in the IgG structure that were permissive to CPP incorporation without destabilizing the antibody. Fusing CPPs to the C-terminus of the light chain and either before or after the hinge had the least effect on antibody developability features. These constructs were further evaluated for cell penetration efficiency. Two out of five tested CPPs significantly enhanced antibody penetration into the cytosol, in particular when fused before or after the hinge. Finally, we demonstrate that specific antibody binding to the cell surface target is necessary for efficient cell penetration of the CPP-antibody fusions. This study provides a solid basis for further exploration of therapeutic antibodies for intracellular targets.


Subject(s)
Antibodies/administration & dosage , Cell-Penetrating Peptides/administration & dosage , Drug Delivery Systems , Animals , Carcinoembryonic Antigen/chemistry , Cell Line, Tumor , Cell Membrane/metabolism , Cell Separation , Cytoplasm/metabolism , Cytosol/metabolism , Extracellular Space , Flow Cytometry , GPI-Linked Proteins/chemistry , Green Fluorescent Proteins/chemistry , HEK293 Cells , Humans , Immunoglobulin G/administration & dosage , Mice , Microscopy, Fluorescence , Protein Binding , Protein Domains , Protein Transport , Recombinant Fusion Proteins/administration & dosage , Surface Plasmon Resonance
3.
Alzheimers Res Ther ; 10(1): 117, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30486882

ABSTRACT

BACKGROUND: Anti-amyloid ß (Aß) immunotherapy represents a major area of drug development for Alzheimer's disease (AD). However, Aß peptide adopts multiple conformations and the pathological forms to be specifically targeted have not been identified. Aß immunotherapy-related vasogenic edema has also been severely dose limiting for antibodies with effector functions binding vascular amyloid such as bapineuzumab. These two factors might have contributed to the limited efficacy demonstrated so far in clinical studies. METHODS: To address these limitations, we have engineered SAR228810, a humanized monoclonal antibody (mAb) with limited Fc effector functions that binds specifically to soluble protofibrillar and fibrillar forms of Aß peptide and we tested it together with its murine precursor SAR255952 in vitro and in vivo. RESULTS: Unlike gantenerumab and BAN2401, SAR228810 and SAR255952 do not bind to Aß monomers, low molecular weight Aß oligomers or, in human brain sections, to Aß diffuse deposits which are not specific of AD pathology. Both antibodies prevent Aß42 oligomer neurotoxicity in primary neuronal cultures. In vivo, SAR255952, a mouse aglycosylated IgG1, dose-dependently prevented brain amyloid plaque formation and plaque-related inflammation with a minimal active dose of 3 mg/kg/week by the intraperitoneal route. No increase in plasma Aß levels was observed with SAR255952 treatment, in line with its lack of affinity for monomeric Aß. The effects of SAR255952 translated into synaptic functional improvement in ex-vivo hippocampal slices. Brain penetration and decoration of cerebral amyloid plaques was documented in live animals and postmortem. SAR255952 (up to 50 mg/kg/week intravenously) did not increase brain microhemorrhages and/or microscopic changes in meningeal and cerebral arteries in old APPSL mice while 3D6, the murine version of bapineuzumab, did. In immunotolerized mice, the clinical candidate SAR228810 demonstrated the same level of efficacy as the murine SAR255952. CONCLUSION: Based on the improved efficacy/safety profile in non-clinical models of SAR228810, a first-in-man single and multiple dose administration clinical study has been initiated in AD patients.


Subject(s)
Alzheimer Disease/therapy , Amyloid beta-Peptides/immunology , Antibodies, Monoclonal, Humanized/administration & dosage , Brain/immunology , Immunotherapy/methods , Alzheimer Disease/immunology , Amyloid beta-Peptides/metabolism , Animals , Antibodies, Monoclonal, Humanized/adverse effects , Brain/metabolism , Excitatory Postsynaptic Potentials/immunology , Female , Hippocampus/immunology , Hippocampus/physiopathology , Humans , Immunotherapy/adverse effects , Male , Mice, Inbred C57BL , Optical Imaging , Primary Cell Culture , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...