Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Med Devices (Auckl) ; 16: 123-132, 2023.
Article in English | MEDLINE | ID: mdl-37304735

ABSTRACT

Introduction: Excessive bleeding in trauma and surgical settings leads to increased operative time, reoperation rates, and overall healthcare costs. A wide range of hemostatic agents have been developed to control bleeding that can vary considerably in type of hemostatic action, ease of application, cost, risk of infection, and dependence on patient coagulation. Microfibrillar collagen-based hemostatic materials (MCH) have yielded beneficial results in a variety of applications. Methods: A new flowable collagen product, containing a modified MCH flour, but in a more convenient flowable delivery system, was evaluated for hemostatic efficacy in preclinical models of solid organ injury and spinal cord exposure. The primary objective of this study was to compare the hemostatic potential and local tissue responses to this novel, flowable collagen-based hemostatic agent to the original flour formulation to confirm that the new method of delivery did not interfere with the hemostatic properties of the MCH flour. Results: When observed visually, the flowable MCH flour mixed with saline (FL) provided more precise application and uniform coverage to injured tissues compared to the dry MCH flour alone (F0). All of the treatments (FL, F0, and gauze) exhibited comparable Lewis bleed grade at all three time points evaluated in the capsular resection liver injury model (bleed grade: 1.0-1.3; p> 0.05 in all cases). FL and F0 exhibited comparable 100% acute hemostatic efficacy and similar long-term histomorphological properties (up to 120 days) in a capsular resection liver injury in pigs, while gauze resulted in significantly lower rates of acute hemostatic efficacy (8-42%, p<0.05 in all cases). In an ovine model of dorsal laminectomy and durotomy, FL and F0 again exhibited comparable results without any neurological effects. Conclusion: Flowable microfibrillar collagen was shown to yield favorable short- and long-term outcomes in two representative applications where hemostatic efficacy is critical to surgical success.

2.
J Invest Surg ; 35(2): 415-423, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33044098

ABSTRACT

PURPOSE: The objective of this study was to determine mechanical and histological properties of Phasix™ ST Mesh in various defect sizes and characterize the tissue replacing Phasix™ ST Mesh in a porcine model of ventral hernia repair. METHODS: Simulated hernia defects were surgically created in the midline of twenty-four (n = 24) Yucatan pigs. Treatment groups included 8 cm defect sutured closed (buttress) and unclosed 4 cm and 8 cm defect groups. Phasix™ ST Mesh (15 cm diameter circle) was implanted laparoscopically and fixated circumferentially with SorbaFix™ Absorbable Fixation System fasteners. The repair sites underwent mechanical, molecular weight, and histological evaluation at 48 and 72 weeks postimplantation. RESULTS: Mechanical testing of Phasix™ ST Mesh-repaired sites revealed similar strengths at both time points for all three repair types, p > 0.05 in all cases (48 weeks: 142.4 ± 6.0 N, 142.3 ± 16.5 N, and 168.8 ± 38.5 N; 72 weeks: 110.0 ± 18.3 N, 138.6 ± 42.2 N, and 160.6 ± 42.0 N for 4 cm defect, 8 cm defect, and 8 cm buttress, respectively. mean ± SEM) No significant differences were observed over time except at 72 weeks postimplantation when the 4 cm defect group exhibited significantly lower strength than the T0 strength of Phasix™ ST Mesh (204.6 ± 5.0 N, p < 0.05). The molecular weight of Phasix™ ST Mesh decreased over time, regardless of repair type. Histological analysis showed comparable mature collagen/fibrovascular tissue around and within the Phasix™ ST Mesh interstices, including the segment of mesh overlying the defect. CONCLUSION: Phasix™ ST Mesh-repaired sites exhibited similar mechanical strengths and histological properties across all defect sizes in this porcine model.


Subject(s)
Hernia, Ventral , Herniorrhaphy , Animals , Hernia, Ventral/surgery , Prostheses and Implants , Surgical Mesh/adverse effects , Swine
3.
Tissue Eng Part A ; 21(1-2): 35-44, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24941900

ABSTRACT

BACKGROUND: Acellular dermal matrices (ADMs) have been commonly used in expander-based breast reconstruction to provide inferolateral prosthesis coverage. Although the clinical performance of these biologic scaffold materials varies depending on a number of factors, an in-depth systematic characterization of the host response is yet to be performed. The present study evaluates the biochemical composition and structure of two ADMs, AlloDerm(®) Regenerative Tissue Matrix and AlloMax™ Surgical Graft, and provides a comprehensive spatiotemporal characterization in a porcine model of tissue expander breast reconstruction. METHODS: Each ADM was characterized with regard to thickness, permeability, donor nucleic acid content, (residual double-stranded DNA [dsDNA]), and growth factors (basic fibroblast growth factor [bFGF], vascular endothelial growth factor [VEGF], and transforming growth factor-beta 1 [TGF-ß1]). Cytocompatibility was evaluated by in vitro cell culture on the ADMs. The host response was evaluated at 4 and 12 weeks at various locations within the ADMs using established metrics of the inflammatory and tissue remodeling response: cell infiltration, multinucleate giant cell formation, extent of ADM remodeling, and neovascularization. RESULTS: AlloMax incorporated more readily with surrounding host tissue as measured by earlier and greater cell infiltration, fewer foreign body giant cells, and faster remodeling of ADM. These findings correlated with the in vitro composition and cytocompatibility analysis, which showed AlloMax to more readily support in vitro cell growth. CONCLUSIONS: AlloMax and AlloDerm demonstrated distinct remodeling characteristics in a porcine model of tissue expander breast reconstruction.


Subject(s)
Acellular Dermis , Mammaplasty/methods , Mammary Glands, Animal/surgery , Tissue Expansion Devices , Animals , Disease Models, Animal , Female , Giant Cells/pathology , Humans , Materials Testing , Mice , NIH 3T3 Cells , Neovascularization, Physiologic , Sus scrofa
4.
ISRN Surg ; 2013: 862549, 2013.
Article in English | MEDLINE | ID: mdl-23762628

ABSTRACT

Purpose. Operative efficiency improvements for laparoscopic ventral hernia repair (LVHR) have focused on reducing operative time while maintaining overall repair efficacy. Our objective was to evaluate procedure time and positioning accuracy of an inflatable mesh positioning device (Echo PS Positioning System), as compared to a standard transfascial suture technique, using a porcine model of simulated LVHR. Methods. The study population consisted of seventeen general surgeons (n = 17) that performed simulated LVHR on seventeen (n = 17) female Yorkshire pigs using two implantation techniques: (1) Ventralight ST Mesh + Echo PS Positioning System (Echo PS) and (2) Ventralight ST Mesh + transfascial sutures (TSs). Procedure time and mesh centering accuracy overtop of a simulated surgical defect were evaluated. Results. Echo PS demonstrated a 38.9% reduction in the overall procedure time, as compared to TS. During mesh preparation and positioning, Echo PS demonstrated a 60.5% reduction in procedure time (P < 0.0001). Although a trend toward improved centering accuracy was observed for Echo PS (16.2%), this was not significantly different than TS. Conclusions. Echo PS demonstrated a significant reduction in overall simulated LVHR procedure time, particularly during mesh preparation/positioning. These operative time savings may translate into reduced operating room costs and improved surgeon/operating room efficiency.

5.
J Surg Res ; 184(2): 766-73, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23582230

ABSTRACT

BACKGROUND: Phasix mesh is a fully resorbable implant for soft tissue reconstruction made from knitted poly-4-hydroxybutyrate monofilament fibers. The objectives of this study were to characterize the in vitro and in vivo mechanical and resorption properties of Phasix mesh over time, and to assess the functional performance in a porcine model of abdominal hernia repair. MATERIALS AND METHODS: We evaluated accelerated in vitro degradation of Phasix mesh in 3 mol/L HCl through 120 h incubation. We also evaluated functional performance after repair of a surgically created abdominal hernia defect in a porcine model through 72 wk. Mechanical and molecular weight (MW) properties were fully characterized in both studies over time. RESULTS: Phasix mesh demonstrated a significant reduction in mechanical strength and MW over 120 h in the accelerated degradation in vitro test. In vivo, the Phasix mesh repair demonstrated 80%, 65%, 58%, 37%, and 18% greater strength, compared with native abdominal wall at 8, 16, 32, and 48 wk post-implantation, respectively, and comparable repair strength at 72 wk post-implantation despite a significant reduction in mesh MW over time. CONCLUSIONS: Both in vitro and in vivo data suggest that Phasix mesh provides a durable scaffold for mechanical reinforcement of soft tissue. Furthermore, a Phasix mesh surgical defect repair in a large animal model demonstrated successful transfer of load bearing from the mesh to the repaired abdominal wall, thereby successfully returning the mechanical properties of repaired host tissue to its native state over an extended time period.


Subject(s)
Hernia, Abdominal/surgery , Herniorrhaphy/instrumentation , Hydroxybutyrates , Surgical Mesh/standards , Animals , Disease Models, Animal , Herniorrhaphy/methods , In Vitro Techniques , Male , Materials Testing , Molecular Weight , Stress, Mechanical , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...