Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(2): e31150, 2012.
Article in English | MEDLINE | ID: mdl-22348046

ABSTRACT

Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue hydrophobicity and more charged residues. Both of these characteristics are positively correlated with the optimal growth temperature of prokaryotes. In contrast, little information has been collected on the molecular 'adaptive' strategy of thermophilic eukaryotes. The Pompeii worm A. pompejana, whose transcriptome has recently been sequenced, is currently considered as the most thermotolerant eukaryote on Earth, withstanding the greatest thermal and chemical ranges known. We investigated the amino-acid composition bias of ribosomal proteins in the Pompeii worm when compared to other lophotrochozoans and checked for putative adaptive changes during the course of evolution using codon-based Maximum likelihood analyses. We then provided a comparative analysis of codon usage and amino-acid replacements from a greater set of orthologous genes between the Pompeii worm and Paralvinella grasslei, one of its closest relatives living in a much cooler habitat. Analyses reveal that both species display the same high GC-biased codon usage and amino-acid patterns favoring both positively-charged residues and protein hydrophobicity. These patterns may be indicative of an ancestral adaptation to the deep sea and/or thermophily. In addition, the Pompeii worm displays a set of amino-acid change patterns that may explain its greater thermotolerance, with a significant increase in Tyr, Lys and Ala against Val, Met and Gly. Present results indicate that, together with a high content in charged residues, greater proportion of smaller aliphatic residues, and especially alanine, may be a different path for metazoans to face relatively 'high' temperatures and thus a novelty in thermophilic metazoans.


Subject(s)
Adaptation, Physiological , Hot Temperature , Hydrothermal Vents , Prokaryotic Cells , Proteome/physiology , Acclimatization , Amino Acids , Animals , Codon , Polychaeta
2.
BMC Genomics ; 11: 634, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-21080938

ABSTRACT

BACKGROUND: Alvinella pompejana is a representative of Annelids, a key phylum for evo-devo studies that is still poorly studied at the sequence level. A. pompejana inhabits deep-sea hydrothermal vents and is currently known as one of the most thermotolerant Eukaryotes in marine environments, withstanding the largest known chemical and thermal ranges (from 5 to 105°C). This tube-dwelling worm forms dense colonies on the surface of hydrothermal chimneys and can withstand long periods of hypo/anoxia and long phases of exposure to hydrogen sulphides. A. pompejana specifically inhabits chimney walls of hydrothermal vents on the East Pacific Rise. To survive, Alvinella has developed numerous adaptations at the physiological and molecular levels, such as an increase in the thermostability of proteins and protein complexes. It represents an outstanding model organism for studying adaptation to harsh physicochemical conditions and for isolating stable macromolecules resistant to high temperatures. RESULTS: We have constructed four full length enriched cDNA libraries to investigate the biology and evolution of this intriguing animal. Analysis of more than 75,000 high quality reads led to the identification of 15,858 transcripts and 9,221 putative protein sequences. Our annotation reveals a good coverage of most animal pathways and networks with a prevalence of transcripts involved in oxidative stress resistance, detoxification, anti-bacterial defence, and heat shock protection. Alvinella proteins seem to show a slow evolutionary rate and a higher similarity with proteins from Vertebrates compared to proteins from Arthropods or Nematodes. Their composition shows enrichment in positively charged amino acids that might contribute to their thermostability. The gene content of Alvinella reveals that an important pool of genes previously considered to be specific to Deuterostomes were in fact already present in the last common ancestor of the Bilaterian animals, but have been secondarily lost in model invertebrates. This pool is enriched in glycoproteins that play a key role in intercellular communication, hormonal regulation and immunity. CONCLUSIONS: Our study starts to unravel the gene content and sequence evolution of a deep-sea annelid, revealing key features in eukaryote adaptation to extreme environmental conditions and highlighting the proximity of Annelids and Vertebrates.


Subject(s)
DNA, Complementary/genetics , Evolution, Molecular , Phylogeny , Polychaeta/genetics , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Amino Acids/genetics , Animals , Base Composition/genetics , Bayes Theorem , Databases, Genetic , Expressed Sequence Tags , Gene Expression Regulation , Gene Library , Internet , Metals, Heavy/toxicity , Molecular Sequence Annotation , Molecular Sequence Data , Oxidative Stress/drug effects , Oxidative Stress/genetics , Polychaeta/drug effects , Protein Structure, Tertiary , Ribosomes/genetics , Temperature , Vertebrates/genetics
3.
Hum Mutat ; 31(2): 127-35, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19921752

ABSTRACT

Understanding how genetic alterations affect gene products at the molecular level represents a first step in the elucidation of the complex relationships between genotypic and phenotypic variations, and is thus a major challenge in the postgenomic era. Here, we present SM2PH-db (http://decrypthon.igbmc.fr/sm2ph), a new database designed to investigate structural and functional impacts of missense mutations and their phenotypic effects in the context of human genetic diseases. A wealth of up-to-date interconnected information is provided for each of the 2,249 disease-related entry proteins (August 2009), including data retrieved from biological databases and data generated from a Sequence-Structure-Evolution Inference in Systems-based approach, such as multiple alignments, three-dimensional structural models, and multidimensional (physicochemical, functional, structural, and evolutionary) characterizations of mutations. SM2PH-db provides a robust infrastructure associated with interactive analysis tools supporting in-depth study and interpretation of the molecular consequences of mutations, with the more long-term goal of elucidating the chain of events leading from a molecular defect to its pathology. The entire content of SM2PH-db is regularly and automatically updated thanks to a computational grid data federation facilities provided in the context of the Decrypthon program.


Subject(s)
Databases, Protein , Genetic Diseases, Inborn/genetics , Mutation, Missense/genetics , Software , Humans , Internet , Phenotype , Proteins , User-Computer Interface
4.
BMC Genomics ; 9: 208, 2008 May 05.
Article in English | MEDLINE | ID: mdl-18457592

ABSTRACT

BACKGROUND: The retina is a multi-layered sensory tissue that lines the back of the eye and acts at the interface of input light and visual perception. Its main function is to capture photons and convert them into electrical impulses that travel along the optic nerve to the brain where they are turned into images. It consists of neurons, nourishing blood vessels and different cell types, of which neural cells predominate. Defects in any of these cells can lead to a variety of retinal diseases, including age-related macular degeneration, retinitis pigmentosa, Leber congenital amaurosis and glaucoma. Recent progress in genomics and microarray technology provides extensive opportunities to examine alterations in retinal gene expression profiles during development and diseases. However, there is no specific database that deals with retinal gene expression profiling. In this context we have built RETINOBASE, a dedicated microarray database for retina. DESCRIPTION: RETINOBASE is a microarray relational database, analysis and visualization system that allows simple yet powerful queries to retrieve information about gene expression in retina. It provides access to gene expression meta-data and offers significant insights into gene networks in retina, resulting in better hypothesis framing for biological problems that can subsequently be tested in the laboratory. Public and proprietary data are automatically analyzed with 3 distinct methods, RMA, dChip and MAS5, then clustered using 2 different K-means and 1 mixture models method. Thus, RETINOBASE provides a framework to compare these methods and to optimize the retinal data analysis. RETINOBASE has three different modules, "Gene Information", "Raw Data System Analysis" and "Fold change system Analysis" that are interconnected in a relational schema, allowing efficient retrieval and cross comparison of data. Currently, RETINOBASE contains datasets from 28 different microarray experiments performed in 5 different model systems: drosophila, zebrafish, rat, mouse and human. The database is supported by a platform that is designed to easily integrate new functionalities and is also frequently updated. CONCLUSION: The results obtained from various biological scenarios can be visualized, compared and downloaded. The results of a case study are presented that highlight the utility of RETINOBASE. Overall, RETINOBASE provides efficient access to the global expression profiling of retinal genes from different organisms under various conditions.


Subject(s)
Databases, Genetic , Gene Expression Profiling , Internet , Retina , Database Management Systems , Information Storage and Retrieval
SELECTION OF CITATIONS
SEARCH DETAIL
...