Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 59(49): 21940-21944, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32830423

ABSTRACT

To mimic a hypothetical pathway for protein evolution, we previously tailored a monomeric protein (cyt cb562 ) for metal-mediated self-assembly, followed by re-design of the resulting oligomers for enhanced stability and metal-based functions. We show that a single hydrophobic mutation on the cyt cb562 surface drastically alters the outcome of metal-directed oligomerization to yield a new trimeric architecture, (TriCyt1)3. This nascent trimer was redesigned into second and third-generation variants (TriCyt2)3 and (TriCyt3)3 with increased structural stability and preorganization for metal coordination. The three TriCyt variants combined furnish a unique platform to 1) provide tunable coupling between protein quaternary structure and metal coordination, 2) enable the construction of metal/pH-switchable protein oligomerization motifs, and 3) generate a robust metal coordination site that can coordinate all mid-to-late first-row transition-metal ions with high affinity.


Subject(s)
Metalloproteins/chemical synthesis , Metals, Heavy/chemistry , Hydrophobic and Hydrophilic Interactions , Metalloproteins/chemistry , Models, Molecular
2.
J Am Chem Soc ; 141(25): 10091-10098, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31146522

ABSTRACT

Molybdenum nitrogenase catalyzes the reduction of dinitrogen into ammonia, which requires the coordinated transfer of eight electrons to the active site cofactor (FeMoco) through the intermediacy of an [8Fe-7S] cluster (P-cluster), both housed in the molybdenum-iron protein (MoFeP). Previous studies on MoFeP from two different organisms, Azotobacter vinelandii ( Av) and Gluconacetobacter diazotrophicus ( Gd), have established that the P-cluster is conformationally flexible and can undergo substantial structural changes upon two-electron oxidation to the POX state, whereby a backbone amidate and an oxygenic residue (Ser or Tyr) ligate to two of the cluster's Fe centers. This redox-dependent change in coordination has been implicated in the conformationally gated electron transfer in nitrogenase. Here, we have investigated the role of the oxygenic ligand in Av MoFeP, which natively contains a Ser ligand (ßSer188) to the P-cluster. Three variants were generated in which (1) the oxygenic ligand was eliminated (ßSer188Ala), (2) the P-cluster environment was converted to the one in Gd MoFeP (ßPhe99Tyr/ßSer188Ala), and (3) two oxygenic ligands were simultaneously included (ßPhe99Tyr). Our studies have revealed that the P-cluster can become compositionally labile upon oxidation and reversibly lose one or two Fe centers in the absence of the oxygenic ligand, while still retaining wild-type-like dinitrogen reduction activity. Our findings also suggest that Av and Gd MoFePs evolved with specific preferences for Ser and Tyr ligands, respectively, and that the structural control of these ligands must extend beyond the primary and secondary coordination spheres of the P-cluster. The P-cluster adds to the increasing number of examples of inherently labile Fe-S clusters whose compositional instability may be an obligatory feature to enable redox-linked conformational changes to facilitate multielectron redox reactions.


Subject(s)
Bacterial Proteins/chemistry , Iron-Sulfur Proteins/chemistry , Nitrogenase/chemistry , Azotobacter vinelandii/enzymology , Bacterial Proteins/genetics , Gluconacetobacter/enzymology , Iron-Sulfur Proteins/genetics , Mutation , Nitrogenase/genetics , Oxidation-Reduction , Protein Conformation , Protein Stability , Serine/chemistry , Tyrosine/chemistry
3.
J Phys Chem B ; 123(23): 4929-4934, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31117618

ABSTRACT

During infection, the bacterial pathogens Staphylococcus aureus and Streptococcus pneumoniae employ ATP-binding cassette (ABC) transporters to acquire Mn(II), an essential nutrient, from the host environment. Staphylococcal MntABC and streptococcal PsaABC attract the attention of the biophysical and bacterial pathogenesis communities because of their established importance during infection. Previous biophysical examination of Mn(II)-MntC and Mn(II)-PsaA using continuous-wave (≈9 GHz) electron paramagnetic resonance (EPR) spectroscopy revealed broad, difficult-to-interpret spectra (Hadley et al. J. Am. Chem. Soc. 2018, 140, 110-113). Herein, we employ high-frequency (>90 GHz), high-field (>3 T) EPR spectroscopy to investigate the Mn(II)-binding sites of these proteins and determine the spin Hamiltonian parameters. Our analyses demonstrate that the zero-field splitting (ZFS) is large for Mn(II)-MntC and Mn(II)-PsaA at +2.72 and +2.87 GHz, respectively. The measured 55Mn hyperfine coupling values for Mn(II)-MntC and Mn(II)-PsaA of 241 and 236 MHz, respectively, demonstrate a more covalent interaction between Mn(II) and the protein compared to Mn(II) in aqueous solution (≈265 MHz). These studies indicate that MntC and PsaA bind Mn(II) in a similar coordination geometry. Comparison of the ZFS values determined herein with those ascertained for other Mn(II) proteins suggests that the Mn(II)-MntC and Mn(II)-PsaA coordination spheres are not five-coordinate in solution.


Subject(s)
Bacterial Proteins/chemistry , Manganese/chemistry , Staphylococcus aureus/chemistry , Streptococcus pneumoniae/chemistry , Electron Spin Resonance Spectroscopy , Models, Molecular
4.
Inorg Chem ; 58(20): 13578-13590, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31145609

ABSTRACT

Manganese is an essential metal ion that bacterial pathogens need to acquire from the vertebrate host during infection. In the mammalian nutritional immunity strategy to combat bacterial infection, the host restricts bacterial access to Mn(II) by sequestering this metal nutrient using the protein calprotectin (CP). The role of murine calprotectin (mCP) in Mn(II) sequestration has been demonstrated in vivo, but the molecular basis of this function has not been evaluated. Herein, biochemical assays and electron paramagnetic resonance (EPR) spectroscopy are employed to characterize the Mn(II) binding properties of mCP. We report that mCP has one high-affinity Mn(II) binding site. This site is a His6 site composed of His17 and His27 of mS100A8 and His92, His97, His105, and His107 of mS100A9. Similar to the human ortholog (hCP), Ca(II) binding to the EF-hand domains of mCP enhances the Mn(II) affinity of the protein; however, this effect requires ≈10-fold more Ca(II) than was previously observed for hCP. Mn(II) coordination to the His6 site also promotes self-association of two mCP heterodimers to form a heterotetramer. Low-temperature X-band EPR spectroscopy revealed a nearly octahedral Mn(II) coordination sphere for the Mn(II)-His6 site characterized by the zero-field splitting parameters D = 525 MHz and E/D = 0.3. Further electron-nuclear double resonance studies with globally 15N-labeled mCP provided hyperfine couplings from the coordinating ε-nitrogen atoms of the His ligands (aiso = 4.3 MHz) as well as the distal δ-nitrogen atoms (aiso = 0.25 MHz). Mn(II) competition assays between mCP and two bacterial Mn(II) solute-binding proteins, staphylococcal MntC and streptococcal PsaA, showed that mCP outcompetes both proteins for Mn(II) under conditions of excess Ca(II). In total, this work provides the first coordination chemistry study of mCP and reveals striking similarities in the Mn(II) coordination sphere as well as notable differences in the Ca(II) sensitivity and oligomerization behavior between hCP and mCP.


Subject(s)
Calcium/chemistry , Coordination Complexes/chemistry , Leukocyte L1 Antigen Complex/chemistry , Manganese/chemistry , Animals , Binding Sites , Humans , Mice , Molecular Structure
5.
J Am Chem Soc ; 140(40): 12798-12807, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30208703

ABSTRACT

Organisms that perform the de novo biosynthesis of cobalamin (vitamin B12) do so via unique pathways depending on the presence of oxygen in the environment. The anaerobic biosynthesis pathway of 5,6-dimethylbenzimidazole, the so-called "lower ligand" to the cobalt center, has been recently identified. This process begins with the conversion of 5-aminoimidazole ribotide (AIR) to 5-hydroxybenzimidazole (HBI) by the radical S-adenosyl-l-methionine (SAM) enzyme BzaF, also known as HBI synthase. In this work we report the characterization of a radical intermediate in the reaction of BzaF using electron paramagnetic resonance spectroscopy. Using various isotopologues of AIR, we extracted hyperfine parameters for a number of nuclei, allowing us to propose plausible chemical compositions and structures for this intermediate. Specifically, we find that an aminoimidazole radical is formed in close proximity to a fragment of the ribose ring. These findings induce the revision of past proposed mechanisms and illustrate the ability of radical SAM enzymes to tightly control the radical chemistry that they engender.


Subject(s)
Bacterial Proteins/metabolism , Benzimidazoles/metabolism , Biosynthetic Pathways , Desulfuromonas/metabolism , Vitamin B 12/metabolism , Anaerobiosis , Electron Spin Resonance Spectroscopy , S-Adenosylmethionine/metabolism
6.
J Am Chem Soc ; 140(1): 110-113, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29211955

ABSTRACT

Human calprotectin (CP, S100A8/S100A9 oligomer) is a metal-sequestering host-defense protein that prevents bacterial acquisition of Mn(II). In this work, we investigate Mn(II) competition between CP and two solute-binding proteins that Staphylococcus aureus and Streptococcus pneumoniae, Gram-positive bacterial pathogens of significant clinical concern, use to obtain Mn(II) when infecting a host. Biochemical and electron paramagnetic resonance (EPR) spectroscopic analyses demonstrate that CP outcompetes staphylococcal MntC and streptococcal PsaA for Mn(II). This behavior requires the presence of excess Ca(II) ions, which enhance the Mn(II) affinity of CP. This report presents new spectroscopic evaluation of two Mn(II) proteins important for bacterial pathogenesis, direct observation of Mn(II) sequestration from bacterial Mn(II) acquisition proteins by CP, and molecular insight into the extracellular battle for metal nutrients that occurs during infection.


Subject(s)
Leukocyte L1 Antigen Complex/chemistry , Manganese/chemistry , Staphylococcus aureus/chemistry , Streptococcus pneumoniae/chemistry , Electron Spin Resonance Spectroscopy , Leukocyte L1 Antigen Complex/metabolism , Manganese/metabolism , Staphylococcus aureus/metabolism , Streptococcus pneumoniae/metabolism
7.
J Am Chem Soc ; 137(8): 3004-16, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25597447

ABSTRACT

The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Herein, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimer is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin-echo envelope modulation and electron-nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed (15)N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by two to three orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His6 site of human calprotectin.


Subject(s)
Calcium/metabolism , Leukocyte L1 Antigen Complex/chemistry , Leukocyte L1 Antigen Complex/metabolism , Manganese/metabolism , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Histidine/chemistry , Humans , Imidazoles/chemistry , Leukocyte L1 Antigen Complex/genetics , Models, Molecular , Mutation , Oligopeptides/chemistry , Protein Binding , Protein Structure, Secondary , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...