Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
J Chem Inf Model ; 63(19): 6068-6080, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37729015

ABSTRACT

Substituents modulate reactions, but their effects are commonly described by using proxies to their functional group properties. Substituent descriptors from the quantum theory of atoms in molecules, which are true functional group properties, are related here to these proxies, which have historically had chemically relevant meaning. Due to the large number of descriptors, multivariate analysis is used to intuit their significance. Multiple linear regression, principal component, and partial least squares regression analyses highlight that these substituent descriptors contain similar information to the proxies while being intrinsic, predictable substituent properties. Sources of error limiting quantitative reproduction of the proxy data include transferability, experimental accuracy, and solvation issues.


Subject(s)
Quantitative Structure-Activity Relationship , Quantum Theory , Linear Models
2.
J Comput Chem ; 43(4): 265-278, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34842294

ABSTRACT

Traditionally, substituents are described not by their intrinsic properties, but by their effect elsewhere in a molecule. However, the quantum theory of atoms in molecules (QTAIM) provides a route to intrinsic substituent descriptors. Ideally, these descriptors would exhibit minimal change as the local environment changes, and hence be considered transferable. Whether this is true is an open question. Here, we evaluated the transferability of QTAIM functional group descriptors for 117 functional groups in a series of 17 substrates to determine whether descriptors obtained using hydrogen as substrate are transferable. The functional group volume has a strong, consistent, linear relationship throughout. All other hydrogen-based group descriptors exhibit a relatively strong linear relationship with those in carbon-based substrates and a reasonable linear relationship with those in non-carbon-based substrates. Outliers are readily interpretable in terms of substrate induced functional group geometry changes. As expected, directional descriptors lying along the substituent-substrate axis are the least conserved.

3.
J Med Chem ; 64(24): 17753-17776, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34748351

ABSTRACT

Accumulation of very long chain fatty acids (VLCFAs) due to defects in ATP binding cassette protein D1 (ABCD1) is thought to underlie the pathologies observed in adrenoleukodystrophy (ALD). Pursuing a substrate reduction approach based on the inhibition of elongation of very long chain fatty acid 1 enzyme (ELOVL1), we explored a series of thiazole amides that evolved into compound 27─a highly potent, central nervous system (CNS)-penetrant compound with favorable in vivo pharmacokinetics. Compound 27 selectively inhibits ELOVL1, reducing C26:0 VLCFA synthesis in ALD patient fibroblasts, lymphocytes, and microglia. In mouse models of ALD, compound 27 treatment reduced C26:0 VLCFA concentrations to near-wild-type levels in blood and up to 65% in the brain, a disease-relevant tissue. Preclinical safety findings in the skin, eye, and CNS precluded progression; the origin and relevance of these findings require further study. ELOVL1 inhibition is an effective approach for normalizing VLCFAs in models of ALD.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Fatty Acid Elongases/administration & dosage , Pyrazoles/pharmacology , Adrenoleukodystrophy/drug therapy , Adrenoleukodystrophy/pathology , Amides/chemistry , Animals , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Humans , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/therapeutic use , Structure-Activity Relationship
4.
Dalton Trans ; 49(42): 14790-14797, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33052369

ABSTRACT

Reaction of 2,2'-bis-p-tBu-calix[4]arene (H8L) with MnCl2·4H2O, GdCl3·6H2O and 2,6-pyridinedimethanol (H2pdm) affords [MnIIIMnIIGdIII(H3L)(pdmH)(pdm)(MeOH)2(dmf)]·3MeCN·dmf (3·3MeCN·dmf) upon vapour diffusion of MeCN into the basic dmf/MeOH mother liquor. 3 crystallises in the tetragonal space group P41212 with the asymmetric unit comprising the entire cluster. The highly unusual core contains a triangular arrangement of MnIIIMnIIGdIII ions housed within a [MnIIIMnIIGdIII(OR)4]4- partial cubane. Magnetic susceptibility and magnetisation data reveal best fit parameters JMn(II)-Mn(III) = +0.415 cm-1, JMn(III)-Gd(III) = +0.221 cm-1, JMn(II)-Gd(III) = -0.258 cm-1 and DMn(III) = -4.139 cm-1. Theoretically derived magnetic exchange interactions, anisotropy parameters, and magneto-structural correlations for 3 are in excellent agreement with the experimental data.

5.
J Comput Chem ; 41(29): 2485-2503, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32864783

ABSTRACT

The quantum theory of atoms in molecules (QTAIM) provides a theoretical foundation to determine the properties of functional groups through additive atomic contributions. Many studies have used QTAIM in their analyses with a variety of electronic structure methods, but it is unknown if the properties measured using one model chemistry, the combination of the electronic structure method and basis set, can be compared to those measured by another. Here, we evaluate the sensitivity of QTAIM functional group and bond critical point properties using six functionals and seven basis sets. High-level B2PLYPD3-BJ/aug-cc-pV5Z reference values are provided for 116 functional groups and the property sensitivity with respect to these values are evaluated based on absolute deviations and by assessing linear relationships. Functional group properties, including charges, dipoles, quadrupoles and volumes, were found to be mostly insensitive to choice of computational model chemistry. However, due to structural and topological inconsistencies, the 6-31G(d) basis set is not recommended for use. Bond critical point properties varied with choice of model chemistry, but models incorporating hybrid functionals and triple-ζ basis sets provided values suitable for use in regression studies.

6.
Inorg Chem ; 59(8): 5276-5280, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32227864

ABSTRACT

Presented herein is a first investigation of the chemical reactivity of osmium-nitrido corroles, which are known for their unusual thermal, chemical, and photochemical stability. Elemental chlorine perchlorinates the ß-positions of the triarylcorrole but leaves the OsN unit untouched. The OsN unit is also unaffected by a variety of other electrophilic and nucleophilic reagents. Upon photolysis, however, the anion of Zeise's salt associates with the nitrido ligand to generate an OsVI≡N-PtII complex. The very short OsN-Pt linkage [1.895(9)-1.917(8) Å] and the downfield 195Pt NMR resonance (-2702 ppm) suggest that the OsN corrole acts as a π-accepting ligand toward the Pt(II) center. This finding represents a rare example of the successful photochemical activation of a metal-ligand multiple bond that is too kinetically inert to exhibit any appreciable reactivity under thermal conditions.

7.
Article in English | MEDLINE | ID: mdl-36164586

ABSTRACT

With the pervasiveness of Electronic Health Records in many hospital systems, the application of machine learning techniques to the field of health informatics has become much more feasible as large amounts of data become more accessible. In our experiment, we evaluated several different convolutional neural network architectures that are typically used in text classification tasks. We then tested those models based on 1,113 histories of present illness. (HPI) notes. This data was run over both sequential and multi-channel architectures, as well as a structure that implemented attention methods meant to focus the model on learning the influential data points within the text. We found that the multi-channel model performed the best with an accuracy of 92%, while the attention and sequential models performed worse with an accuracy of 90% and 89% respectively.

8.
Stud Health Technol Inform ; 264: 283-287, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31437930

ABSTRACT

Clinical text de-identification enables collaborative research while protecting patient privacy and confidentiality; however, concerns persist about the reduction in the utility of the de-identified text for information extraction and machine learning tasks. In the context of a deep learning experiment to detect altered mental status in emergency department provider notes, we tested several classifiers on clinical notes in their original form and on their automatically de-identified counterpart. We tested both traditional bag-of-words based machine learning models as well as word-embedding based deep learning models. We evaluated the models on 1,113 history of present illness notes. A total of 1,795 protected health information tokens were replaced in the de-identification process across all notes. The deep learning models had the best performance with accuracies of 95% on both original and de-identified notes. However, there was no significant difference in the performance of any of the models on the original vs. the de-identified notes.


Subject(s)
Data Anonymization , Deep Learning , Confidentiality , Electronic Health Records , Humans , Machine Learning
9.
BMC Med Inform Decis Mak ; 19(1): 164, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31426779

ABSTRACT

BACKGROUND: Machine learning has been used extensively in clinical text classification tasks. Deep learning approaches using word embeddings have been recently gaining momentum in biomedical applications. In an effort to automate the identification of altered mental status (AMS) in emergency department provider notes for the purpose of decision support, we compare the performance of classic bag-of-words-based machine learning classifiers and novel deep learning approaches. METHODS: We used a case-control study design to extract an adequate number of clinical notes with AMS and non-AMS based on ICD codes. The notes were parsed to extract the history of present illness, which was used as the clinical text for the classifiers. The notes were manually labeled by clinicians. As a baseline for comparison, we tested several traditional bag-of-words based classifiers. We then tested several deep learning models using a convolutional neural network architecture with three different types of word embeddings, a pre-trained word2vec model and two models without pre-training but with different word embedding dimensions. RESULTS: We evaluated the models on 1130 labeled notes from the emergency department. The deep learning models had the best overall performance with an area under the ROC curve of 98.5% and an accuracy of 94.5%. Pre-training word embeddings on the unlabeled corpus reduced training iterations and had performance that was statistically no different than the other deep learning models. CONCLUSION: This supervised deep learning approach performs exceedingly well for the detection of AMS symptoms in clinical text in our environment. Further work is needed for the generalizability of these findings, including evaluation of these models in other types of clinical notes and other environments. The results seem promising for the ultimate use of these types of classifiers in combination with other information derived from the electronic health records as input for clinical decision support.


Subject(s)
Decision Support Systems, Clinical , Deep Learning , Emergency Service, Hospital , Mental Disorders/diagnosis , Adult , Case-Control Studies , Electronic Health Records , Female , Humans , International Classification of Diseases , Male , Neural Networks, Computer , Sensitivity and Specificity
10.
Dalton Trans ; 48(31): 11632-11636, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31274137

ABSTRACT

The synthesis of a new {Ni8} cluster bearing tetrazolate- and azido-bridging ligands, and supported by chelating α-methyl-2-pyridine-methanol (mpmH) groups, is described herein. The reported compound has a unique trapezoidal prismatic topology, resulting from an unexpected in situ click reaction between the MeCN reaction solvent and the N3- ions under mild, room-temperature conditions. Such a click chemistry approach to the preparation of 0-D compounds is relatively unexplored and represents a fruitful strategy for the synthesis of new coordination clusters and molecule-based magnetic materials.

11.
Inorg Chem ; 57(16): 9656-9669, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-29873229

ABSTRACT

Presented herein is a detailed multitechnique investigation of ligand noninnocence in S = 3/2 manganese corrole derivatives at the formal MnIV oxidation state. The Soret maxima of Mn[T pXPC]Cl (T pXPC = meso-tris( p-X-phenyl)corrole, where X = CF3, H, Me, and OMe) were found to red-shift over a range of 37 nm with increasing electron-donating character of X. For Mn[T pXPC]Ph, in contrast, the complex Soret envelopes were found to be largely independent of X. These observations suggested a noninnocent corrole•2--like ligand for the MnCl complexes and an innocent corrole3- ligand for the MnPh complexes. Single-crystal X-ray structures of three Mn[T pXPC]Cl complexes revealed skeletal bond-length alternations indicative of a noninnocent corrole, while no such alternation was observed for Mn[T pOMePC]Ph. B3LYP density functional theory (DFT) calculations on Mn[TPC]Cl yielded strong spatial separation of the α and ß spin densities, consistent with an antiferromagnetically coupled MnIII-corrole•2- description. By comparison, relatively little spatial separation of the α and ß spin densities was found for Mn[TPC]Ph, consistent with an essentially MnIV-corrole3- description. X-ray absorption of near-edge spectroscopy (XANES) revealed a moderate blue shift of 0.6 eV for the Mn K-pre-edge of Mn[T pCF3PC]Ph and a striking enhancement of the pre-edge intensity, relative to Mn[T pCF3PC]Cl, consistent with a more oxidized, i.e., MnIV, center in Mn[T pCF3PC]Ph. Time-dependent DFT calculations indicated that the enhanced intensity of the Mn K-pre-edge of Mn[T pCF3PC]Ph results from the extra 3d z2 hole, which mixes strongly with the Mn 4p z orbital. Combined with similar results on Fe[TPC]Cl and Fe[TPC]Ph, the present study underscores the considerable potential of metal K-edge XANES in probing ligand noninnocence in first-row transition-metal corroles. Cyclic voltammetry measurements revealed highly negative first reduction potentials for the Mn[T pXPC]Ph series (∼-0.95 V) as well as large electrochemical HOMO-LUMO gaps of ∼1.7 V. The first reductions, however, are irreversible, suggesting cleavage of the Mn-Ph bond.

12.
ACS Omega ; 3(8): 9360-9368, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459069

ABSTRACT

A series of stable Pt(IV) corrole complexes with the general formula PtIV[TpXPC](m/p-C6H4CN)(py), where TpXPC3- is the trianion of a tris(p-X-phenyl)corrole and X = CF3, H, and CH3, has been synthesized, affording key physicochemical data on a rare and elusive class of metallocorroles. Single-crystal X-ray structures of two of the complexes revealed very short equatorial Pt-N distances of 1.94-1.97 Å, an axial Pt-C distance of ∼2.03 Å, and an axial Pt-N distance of ∼2.22 Å. The complexes exhibit Soret maxima at ∼430 nm, which are essentially independent of the meso-aryl para substituents, and strong Q bands with the most intense peak at 595-599 nm. The substituent-independent Soret maxima are consistent with an innocent PtIV-corrole3- description for the complexes. The low reduction potentials (-1.45 ± 0.08 V vs saturated calomel reference electrode) also support a highly stable Pt(IV) ground state as opposed to a noninnocent corrole•2- description. The reductions, however, are irreversible, which suggests that they involve concomitant cleavage of the Pt-aryl bond. Unlike Pt(IV) porphyrins, two of the complexes, PtIV[TpXPC](m-C6H4CN)(py) (X = CF3 and CH3), were found to exhibit room-temperature near-IR phosphorescence with emission maxima at 813 and 826 nm, respectively. The quantum yield of ∼0.3% is comparable to those observed for six-coordinate Ir(III) corroles.

13.
Inorg Chem ; 56(24): 14788-14800, 2017 Dec 18.
Article in English | MEDLINE | ID: mdl-29210572

ABSTRACT

A reinvestigation of cobalt-corrole-triphenylphosphine complexes has yielded an unexpectedly subtle picture of their electronic structures. UV-vis absorption spectroscopy, skeletal bond length alternations observed in X-ray structures, and broken-symmetry DFT (B3LYP) calculations suggest partial CoII-corrole•2- character for these complexes. The same probes applied to the analogous rhodium corroles evince no evidence of a noninnocent corrole. X-ray absorption spectroscopic studies showed that the Co K rising edge of Co[TPC](PPh3) (TPC = triphenylcorrole) is red-shifted by ∼1.8 eV relative to the bona fide Co(III) complexes Co[TPC](py)2 and Co[TPP](py)Cl (TPP = tetraphenylporphyrin, py = pyridine), consistent with a partial CoII-corrole•2- description for Co[TPC](PPh3). Electrochemical measurements have shown that both the Co and Rh complexes undergo two reversible oxidations and one to two irreversible reductions. In particular, the first reduction of the Rh corroles occurs at significantly more negative potentials than that of the Co corroles, reflecting significantly higher stability of the Rh(III) state relative to Co(III). Together, the results presented herein suggest that cobalt-corrole-triphenylphosphine complexes are significantly noninnocent with moderate CoII-corrole•2- character, underscoring-yet again-the ubiquity of ligand noninnocence among first-row transition metal corroles.

14.
J Phys Chem A ; 121(50): 9589-9598, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29227102

ABSTRACT

Two sets of complexes of Co-triarylcorrole-bispyridine complexes, Co[TpXPC](py)2 and Co[Br8TpXPC](py)2 have been synthesized, where TpXPC refers to a meso-tris(para-X-phenyl)corrole ligand with X = CF3, H, Me, and OMe and Br8TpXPC to the corresponding ß-octabrominated ligand. The axial pyridines in these complexes were found to be labile and, in dilute solutions in dichloromethane, the complexes dissociate almost completely to the five-coordinate monopyridine complexes. Upon addition of a small quantity of pyridine, the complexes revert back to the six-coordinate forms. These transformations are accompanied by dramatic changes in color and optical spectra. 1H NMR spectroscopy and X-ray crystallography have confirmed that the bispyridine complexes are authentic low-spin Co(III) species. Strong substituent effects on the Soret maxima and broken-symmetry DFT calculations, however, indicate a CoII-corrole•2- formulation for the five-coordinate Co[TpXPC](py) series. The calculations implicate a Co(dz2)-corrole("a2u") orbital interaction as responsible for the metal-ligand antiferromagnetic coupling that leads to the open-shell singlet ground state of these species. Furthermore, the calculations predict two low-energy S = 1 intermediate-spin Co(III) states, a scenario that we have been able to experimentally corroborate with temperature-dependent EPR studies. Our findings add to the growing body of evidence for noninnocent electronic structures among first-row transition metal corrole derivatives.

15.
Chem Sci ; 8(6): 4387-4398, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28966783

ABSTRACT

The crystallographic characterization of framework-guest interactions in metal-organic frameworks allows the location of guest binding sites and provides meaningful information on the nature of these interactions, enabling the correlation of structure with adsorption behavior. Here, techniques developed for in situ single-crystal X-ray diffraction experiments on porous crystals have enabled the direct observation of CO, CH4, N2, O2, Ar, and P4 adsorption in Co2(dobdc) (dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate), a metal-organic framework bearing coordinatively unsaturated cobalt(ii) sites. All these molecules exhibit such weak interactions with the high-spin cobalt(ii) sites in the framework that no analogous molecular structures exist, demonstrating the utility of metal-organic frameworks as crystalline matrices for the isolation and structural determination of unstable species. Notably, the Co-CH4 and Co-Ar interactions observed in Co2(dobdc) represent, to the best of our knowledge, the first single-crystal structure determination of a metal-CH4 interaction and the first crystallographically characterized metal-Ar interaction. Analysis of low-pressure gas adsorption isotherms confirms that these gases exhibit mainly physisorptive interactions with the cobalt(ii) sites in Co2(dobdc), with differential enthalpies of adsorption as weak as -17(1) kJ mol-1 (for Ar). Moreover, the structures of Co2(dobdc)·3.8N2, Co2(dobdc)·5.9O2, and Co2(dobdc)·2.0Ar reveal the location of secondary (N2, O2, and Ar) and tertiary (O2) binding sites in Co2(dobdc), while high-pressure CO2, CO, CH4, N2, and Ar adsorption isotherms show that these binding sites become more relevant at elevated pressures.

16.
Chemistry ; 23(56): 14073-14079, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-28792636

ABSTRACT

Calix[4]arenes are versatile ligands that, whilst also serving other purposes, can act as platforms for the synthesis of a wide range of 3d, 4f, and 3d-4f polymetallic clusters. The empirical metal ion binding rules established for calix[4]arene are closely mirrored by bis-calix[4]arene, a relatively new ligand in which two equivalents of the former are directly tethered at a methylene bridge position. The direct tethering within bis-calix[4]arene gives rise to some structural features that are related to calix[4]arene coordination chemistry, but the prevailing clusters have fascinating new topologies and coordination behaviors. Here, we present the synthesis of a family of new bis-calix[4]arene-supported 3d-4f clusters, as well as their structural characterization and magnetic properties. Comparison is drawn with calix[4]arene coordination chemistry, showing logical extension of common structural fragments and cluster capping behaviors upon moving to bis-calix[4]arene. This approach therefore holds great potential for tuning cluster formation and composition at a high level through subsequent ligand alteration.

17.
ChemistryOpen ; 6(3): 402-409, 2017 06.
Article in English | MEDLINE | ID: mdl-28638773

ABSTRACT

Presented herein is a study of the acid-induced demetalation of two sterically hindered copper corroles, Cu ß-octabromo-meso-triphenylcorrole (Cu[Br8TPC]) and ß-octakis(trifluoromethyl)-meso-tris(p-methoxyphenyl)corrole (Cu[(CF3)8TpOMePC]). Unlike reductive demetalation, which affords the free-base ß-octabromocorrole, demetalation of Cu[Br8TPC] under non- reductive conditions (CHCl3/H2SO4) resulted in moderate yields of free-base 5- and 10-hydroxy isocorroles. The isomeric free bases could be complexed to CoII and NiII, affording stable complexes. Only reductive demetalation was found to work for Cu[(CF3)8TpOMePC], affording a highly saddled, hydrated corrole, H3[5-OH,10-H-(CF3)8TpOMePC], where the elements of water had added across C5 and C10. Interaction of this novel free base with CoII resulted in Co[iso-10-H-[CF3)8TpOMePC], a CoII 10-hydro isocorrole. The new metal complexes were all characterized by single-crystal X-ray diffraction analysis and, despite their sterically hindered nature, were found to exhibit almost perfectly planar isocorrole cores.

18.
ChemistryOpen ; 6(2): 221-225, 2017 04.
Article in English | MEDLINE | ID: mdl-28413755

ABSTRACT

A one-pot protocol, effecting 14-fold bromination with elemental bromine, has afforded copper ß-octabromo-meso-tris(2,6-dibromo-3,5-dimethoxyphenyl)corrole, a new bis-pocket metallocorrole. The Cu complex underwent smooth demetalation under reductive conditions, affording the free corrole ligand, which in turn could be readily complexed to MnIII and AuIII. A single-crystal X-ray structure was obtained for the MnIII complex.

19.
Inorg Chem ; 56(9): 5285-5294, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28422487

ABSTRACT

Given the many applications of ruthenium porphyrins, the rarity of ruthenium corroles and the underdeveloped state of their chemistry are clearly indicative of an area ripe for significant breakthroughs. The tendency of ruthenium corroles to form unreactive metal-metal-bonded dimers has been recognized as a key impediment in this area. Herein, by exposing free-base meso-tris(p-X-phenyl)corroles, H3[TpXPC] (X = CF3, H, Me, and OMe), and [Ru(COD)Cl2]x in refluxing 2-methoxyethanol to nitrite, we have been able to reliably intercept the series Ru[TpXPC](NO) in a matter of seconds to minutes and subsequently RuVI[TpXPC](N), the products of a second deoxygenation, over some 16 h. Two of the RuVIN complexes and one ruthenium corrole dimer could be crystallographically analyzed; the Ru-Nnitrido distance was found to be ∼1.61 Å, consistent with the triple-bonded character of the RuVIN units and essentially identical with the Os-Nnitrido distance in analogous osmium corroles. Spectroscopic and density functional theory (DFT) calculations suggest that the RuNO corroles are best viewed as innocent {RuNO}6 complexes, whereas the analogous FeNO corroles are noninnocent, i.e., best viewed as {FeNO}7-corrole•2-. Both RuVIN and OsVIN corroles exhibit sharp Soret bands, suggestive of an innocent macrocycle. A key difference between the two metals is that the Soret maxima of the OsVIN corroles are red-shifted some 25 nm relative to those of the RuVIN complexes. Careful time-dependent DFT studies indicate that this difference is largely attributable to relativistic effects in OsVIN corroles. The availability of two new classes of mononuclear ruthenium corroles potentially opens the door to new applications, in such areas as catalysis and cancer therapy.

20.
Nat Commun ; 8: 14212, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28194014

ABSTRACT

Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host-guest systems. Here we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(VIII) {[VIII2(OH)2(L)], LH4=biphenyl-3,3',5,5'-tetracarboxylic acid} can be oxidized to isostructural MFM-300(VIV), [VIV2O2(L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(VIII) shows the second highest CO2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g-1) and involves hydrogen bonding between the OH group of the host and the O-donor of CO2, which binds in an end-on manner, =1.863(1) Å. In contrast, CO2-loaded MFM-300(VIV) shows CO2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique ···c.g.phenyl interaction [3.069(2), 3.146(3) Å]. The macroscopic packing of CO2 in the pores is directly influenced by these primary binding sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...