Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Orthop Res ; 42(1): 193-201, 2024 01.
Article in English | MEDLINE | ID: mdl-37416978

ABSTRACT

Nonunion and segmental bone defects are complex issues in orthopedic trauma. The use of endothelial progenitor cells (EPCs), as part of a cell-based therapy for bone healing is a promising approach. In preclinical studies, culture medium (CM) is commonly used to deliver EPCs to the defect site, which has the potential for immunogenicity in humans. The goal of this study was to find an effective and clinically translatable delivery medium for EPCs. Accordingly, this study compared EPCs delivered in CM, phosphate-buffered saline (PBS), platelet-poor plasma (PPP), and platelet-rich plasma (PRP) in a rat model of femoral critical-size defects. Fischer 344 rats (n = 35) were divided into six groups: EPC+CM, EPC+PBS, EPC+PPP, EPC+PRP, PPP alone, and PRP alone. A 5 mm mid-diaphyseal defect was created in the right femur and stabilized with a miniplate. The defect was filled with a gelatin scaffold impregnated with the corresponding treatment. Radiographic, microcomputed tomography and biomechanical analyses were performed. Overall, regardless of the delivery medium, groups that received EPCs had higher radiographic scores and union rates, higher bone volume, and superior biomechanical properties compared to groups treated with PPP or PRP alone. There were no significant differences in any outcomes between EPC subgroups or between PPP and PRP alone. These results suggest that EPCs are effective in treating segmental defects in a rat model of critical-size defects regardless of the delivery medium used. Consequently, PBS could be the optimal medium for delivering EPCs, given its low cost, ease of preparation, accessibility, noninvasiveness, and nonimmunogenic properties.


Subject(s)
Endothelial Progenitor Cells , Platelet-Rich Plasma , Humans , Rats , Animals , X-Ray Microtomography , Femur , Cell- and Tissue-Based Therapy
2.
Sensors (Basel) ; 21(12)2021 Jun 13.
Article in English | MEDLINE | ID: mdl-34199235

ABSTRACT

One third of fatal car accidents and so many tragedies are due to alcohol abuse. These sad numbers could be mitigated if everyone had access to a breathalyzer anytime and anywhere. Having a breathalyzer built into a phone or wearable technology could be the way to get around reluctance to carry a separate device. With this goal, we propose an inexpensive breathalyzer that could be integrated in the screens of mobile devices. Our technology is based on the evaporation rate of the fog produced by the breath on the phone screen, which increases with increasing breath alcohol content. The device simply uses a photodiode placed on the side of the screen to measure the signature of the scattered light intensity from the phone display that is guided through the stress layer of the Gorilla glass screen. A part of the display light is coupled to the stress layer via the evanescent field induced at the edge of the breath microdroplets. We demonstrate that the intensity signature measured at the detector can be linked to blood alcohol content. We fabricated a prototype in a smartphone case powered by the phone's battery, controlled by an application installed on the smartphone, and tested it in real-world environments. Limitations and future work toward a fully operational device are discussed.


Subject(s)
Smartphone , Wearable Electronic Devices , Blood Alcohol Content , Breath Tests , Light
3.
Int J Mol Sci ; 22(6)2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33804806

ABSTRACT

Peritoneal resident macrophages play a key role in combating sepsis in the peritoneal cavity. We sought to determine if peritoneal transplantation of embryonic Myb- "peritoneal-like" macrophages attenuate abdominal fecal sepsis. Directed differentiation of rodent pluripotent stem cells (PSCs) was used in factor-defined media to produce embryonic-derived large "peritoneal-like" macrophages (Ed-LPM) that expressed peritoneal macrophage markers and demonstrated phagocytic capacity. Preclinical in vivo studies determined Ed-LPM efficacy in rodent abdominal fecal sepsis with or without Meropenem. Ex vivo studies explored the mechanism and effects of Ed-LPM on host immune cell number and function, including phagocytosis, reactive oxygen species (ROS) production, efferocytosis and apoptosis. Ed-LPM reduced sepsis severity by decreasing bacterial load in the liver, spleen and lungs. Ed-LPM therapy significantly improved animal survival by ~30% and reduced systemic bacterial burden to levels comparable to Meropenem therapy. Ed-LPM therapy decreased peritoneal TNFα while increasing IL-10 concentrations. Ed-LPMs enhanced peritoneal macrophage phagocytosis of bacteria, increased macrophage production of ROS and restored homeostasis via apoptosis and efferocytosis-induced clearance of neutrophils. In conclusion, Ed-LPM reduced systemic sepsis severity, improved survival and reduced bacterial load by enhancing peritoneal macrophage bacterial phagocytosis and killing and clearance of intra-peritoneal neutrophils. Macrophage therapy may be a potential strategy to address sepsis.


Subject(s)
Bacterial Load , Macrophages/immunology , Macrophages/metabolism , Proto-Oncogene Proteins c-myb/deficiency , Sepsis/etiology , Sepsis/metabolism , Animals , Cytokines/metabolism , Disease Models, Animal , Leukocyte Count , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Phagocytosis/immunology , Prognosis , Rats , Sepsis/diagnosis , Sepsis/mortality , Severity of Illness Index
4.
Sci Rep ; 11(1): 9116, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33907246

ABSTRACT

Rayleigh scattering enhanced nanoparticles-doped optical fibers are highly promising for distributed sensing applications, however, the high optical losses induced by that scattering enhancement restrict considerably their sensing distance to few meters. Fabrication of long-range distributed optical fiber sensors based on this technology remains a major challenge in optical fiber community. In this work, it is reported the fabrication of low-loss Ca-based nanoparticles doped silica fibers with tunable Rayleigh scattering for long-range distributed sensing. This is enabled by tailoring nanoparticle features such as particle distribution size, morphology and density in the core of optical fibers through preform and fiber fabrication process. Consequently, fibers with tunable enhanced backscattering in the range 25.9-44.9 dB, with respect to a SMF-28 fiber, are attained along with the lowest two-way optical losses, 0.1-8.7 dB/m, reported so far for Rayleigh scattering enhanced nanoparticles-doped optical fibers. Therefore, the suitability of Ca-based nanoparticles-doped optical fibers for distributed sensing over longer distances, from 5 m to more than 200 m, becomes possible. This study opens a new path for future works in the field of distributed sensing, since these findings may be applied to other nanoparticles-doped optical fibers, allowing the tailoring of nanoparticle properties, which broadens future potential applications of this technology.

5.
Front Psychiatry ; 11: 231, 2020.
Article in English | MEDLINE | ID: mdl-32317990

ABSTRACT

A small number of severely and persistently mentally ill in-patients awaiting residential or long-stay facilities represent an obstacle to the efficient utilization of acute care beds. These facilities are costly and currently reputed to be contrary to recovery principles. In 2013, all acute psychiatric care wards in Montreal identified 194 in-patients who could be discharged to residential or long-term nursing care facilities. Program clinical professionals of regional residential facilities sent adapted standardized questionnaires to ward staff. Evaluators also collected the residential preferences of both staff and patients, and then made their own assessments. The 194 in-patients were mostly middle-aged single men. Over 80% had a psychosis diagnosis and half had judicial constraints. The staff evaluated that 71.1% could be discharged from hospital within 24 h. Of these, 55% could be referred to group resources with continuous 24 h, 7 days a week staff presence, 32% could be transferred to apartments with 7-day continuous or non-continuous staff presence, 12% could be transferred to institutional care and only 2% could be moved to an apartment of their own. Evaluator and ward staff residential preferences were highly similar, but differed with patient preferences, half of whom prefer their own apartment. Discrepancy between staff evaluations and patient preferences were higher for longer stay patients with more severe symptoms and comorbidity of personality disorders.

6.
Anesthesiology ; 132(1): 140-154, 2020 01.
Article in English | MEDLINE | ID: mdl-31764154

ABSTRACT

BACKGROUND: Mesenchymal stromal cells have therapeutic potential in sepsis, but the mechanism of action is unclear. We tested the effects, dose-response, and mechanisms of action of cryopreserved, xenogeneic-free human umbilical cord mesenchymal stromal cells in a rat model of fecal peritonitis, and examined the role of heme oxygenase-1 in protection. METHODS: Separate in vivo experiments evaluated mesenchymal stromal cells in fecal sepsis, established dose response (2, 5, and 10 million cells/kg), and the role of heme oxygenase-1 in mediating human umbilical cord-derived mesenchymal stromal/stem cell effects. Ex vivo studies utilized pharmacologic blockers and small inhibitory RNAs to evaluate mechanisms of mesenchymal stromal cell enhanced function in (rodent, healthy and septic human) macrophages. RESULTS: Human umbilical cord mesenchymal stromal cells reduced injury and increased survival (from 48%, 12 of 25 to 88%, 14 of 16, P = 0.0033) in fecal sepsis, with dose response studies demonstrating that 10 million cells/kg was the most effective dose. Mesenchymal stromal cells reduced bacterial load and peritoneal leukocyte infiltration (from 9.9 ± 3.1 × 10/ml to 6.2 ± 1.8 × 10/ml, N = 8 to 10 per group, P < 0.0001), and increased heme oxygenase-1 expression in peritoneal macrophages, liver, and spleen. Heme oxygenase-1 blockade abolished the effects of mesenchymal stromal cells (N = 7 or 8 per group). Mesenchymal stromal cells also increased heme oxygenase-1 expression in macrophages from healthy donors and septic patients. Direct ex vivo upregulation of macrophage heme oxygenase-1 enhanced macrophage function (phagocytosis, reactive oxygen species production, bacterial killing). Blockade of lipoxin A4 production in mesenchymal stromal cells, and of prostaglandin E2 synthesis in mesenchymal stromal cell/macrophage cocultures, prevented upregulation of heme oxygenase-1 in macrophages (from 9.6 ± 5.5-fold to 2.3 ± 1.3 and 2.4 ± 2.3 respectively, P = 0.004). Knockdown of heme oxygenase-1 production in macrophages ablated mesenchymal stromal cell enhancement of macrophage phagocytosis. CONCLUSIONS: Human umbilical cord mesenchymal stromal cells attenuate systemic sepsis by enhancing peritoneal macrophage bacterial killing, mediated partly via upregulation of peritoneal macrophage heme oxygenase-1. Lipoxin A4 and prostaglandin E2 play key roles in the mesenchymal stromal cell and macrophage interaction.


Subject(s)
Heme Oxygenase-1/metabolism , Macrophages, Peritoneal/metabolism , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Sepsis/therapy , Umbilical Cord , Animals , Humans , Male , Rats , Rats, Sprague-Dawley
7.
Sensors (Basel) ; 19(16)2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31398948

ABSTRACT

Cardiography is an indispensable element of health care. However, the accessibility of at-home cardiac monitoring is limited by device complexity, accuracy, and cost. We have developed a real-time algorithm for heart rate monitoring and beat detection implemented in a custom-built, affordable system. These measurements were processed from seismocardiography (SCG) and gyrocardiography (GCG) signals recorded at the sternum, with concurrent electrocardiography (ECG) used as a reference. Our system demonstrated the feasibility of non-invasive electro-mechanical cardiac monitoring on supine, stationary subjects at a cost of $100, and with the SCG-GCG and ECG algorithms decoupled as standalone measurements. Testing was performed on 25 subjects in the supine position when relaxed, and when recovering from physical exercise, to record 23,984 cardiac cycles at heart rates in the range of 36-140 bpm. The correlation between the two measurements had r2 coefficients of 0.9783 and 0.9982 for normal (averaged) and instantaneous (beat identification) heart rates, respectively. At a sampling frequency of 250 Hz, the average computational time required was 0.088 s per measurement cycle, indicating the maximum refresh rate. A combined SCG and GCG measurement was found to improve accuracy due to fundamentally different noise rejection criteria in the mutually orthogonal signals. The speed, accuracy, and simplicity of our system validated its potential as a real-time, non-invasive, and affordable solution for outpatient cardiac monitoring in situations with negligible motion artifact.


Subject(s)
Electrocardiography/methods , Heart Rate/physiology , Heart/physiology , Accelerometry , Algorithms , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/pathology , Electrocardiography/instrumentation , Humans , Wearable Electronic Devices
8.
J Clin Med ; 8(6)2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31200579

ABSTRACT

Enhancing the immunomodulatory effects of mesenchymal stromal cells (MSCs) may increase their effects in sepsis. We tested the potential for overexpression of Interleukin-10 (IL-10) in human umbilical cord (UC) MSCs to increase MSC efficacy in Escherichia coli (E. coli) pneumosepsis and to enhance human macrophage function. Pneumonia was induced in rats by intratracheal instillation of E. coli ((2.0-3.0) × 109 Colony forming units (CFU)/kg). One hour later, animals were randomized to receive (a) vehicle; (b) naïve UC-MSCs; or (c) IL-10 overexpressing UC-MSCs (1 × 107 cells/kg). Lung injury severity, cellular infiltration, and E. coli colony counts were assessed after 48 h. The effects and mechanisms of action of IL-10 UC-MSCs on macrophage function in septic rodents and in humans were subsequently assessed. Survival increased with IL-10 (9/11 (82%)) and naïve (11/12 (91%)) UC-MSCs compared to vehicle (9/15 (60%, p = 0.03). IL-10 UC-MSCs-but not naïve UC-MSCs-significantly decreased the alveolar arterial gradient (455 93 and 520 81, mmHg, respectively) compared to that of vehicle animals (544 52, p = 0.02). Lung tissue bacterial counts were significantly increased in vehicle- and naïve-UC-MSC-treated animals but were not different from sham animals in those treated with IL-10 overexpressing UC-MSCs. IL-10 (but not naïve) UC-MSCs decreased alveolar neutrophils and increased alveolar macrophage percentages compared to vehicle. IL-10 UC-MSCs decreased structural lung injury compared to naïve UC-MSC or vehicle therapy. Alveolar macrophages from IL-10-UC-MSC-treated rats and from human volunteers demonstrated enhanced phagocytic capacity. This was mediated via increased macrophage hemeoxygenase-1, an effect blocked by prostaglandin E2 and lipoxygenase A4 blockade. IL-10 overexpression in UC-MSCs enhanced their effects in E. coli pneumosepsis and increased macrophage function. IL-10 UC-MSCs similarly enhanced human macrophage function, illustrating their therapeutic potential for infection-induced acute respiratory distress syndrome (ARDS).

9.
Anesthesiology ; 130(5): 778-790, 2019 05.
Article in English | MEDLINE | ID: mdl-30870158

ABSTRACT

BACKGROUND: Human umbilical cord mesenchymal stromal cells possess considerable therapeutic promise for acute respiratory distress syndrome. Umbilical cord mesenchymal stromal cells may exert therapeutic effects via extracellular vesicles, while priming umbilical cord mesenchymal stromal cells may further enhance their effect. The authors investigated whether interferon-γ-primed umbilical cord mesenchymal stromal cells would generate mesenchymal stromal cell-derived extracellular vesicles with enhanced effects in Escherichia coli (E. coli) pneumonia. METHODS: In a university laboratory, anesthetized adult male Sprague-Dawley rats (n = 8 to 18 per group) underwent intrapulmonary E. coli instillation (5 × 10 colony forming units per kilogram), and were randomized to receive (a) primed mesenchymal stromal cell-derived extracellular vesicles, (b) naïve mesenchymal stromal cell-derived extracellular vesicles (both 100 million mesenchymal stromal cell-derived extracellular vesicles per kilogram), or (c) vehicle. Injury severity and bacterial load were assessed at 48 h. In vitro studies assessed the potential for primed and naïve mesenchymal stromal cell-derived extracellular vesicles to enhance macrophage bacterial phagocytosis and killing. RESULTS: Survival increased with primed (10 of 11 [91%]) and naïve (8 of 8 [100%]) mesenchymal stromal cell-derived extracellular vesicles compared with vehicle (12 of 18 [66.7%], P = 0.038). Primed-but not naïve-mesenchymal stromal cell-derived extracellular vesicles reduced alveolar-arterial oxygen gradient (422 ± 104, 536 ± 58, 523 ± 68 mm Hg, respectively; P = 0.008), reduced alveolar protein leak (0.7 ± 0.3, 1.4 ± 0.4, 1.5 ± 0.7 mg/ml, respectively; P = 0.003), increased lung mononuclear phagocytes (23.2 ± 6.3, 21.7 ± 5, 16.7 ± 5 respectively; P = 0.025), and reduced alveolar tumor necrosis factor alpha concentrations (29 ± 14.5, 35 ± 12.3, 47.2 ± 6.3 pg/ml, respectively; P = 0.026) compared with vehicle. Primed-but not naïve-mesenchymal stromal cell-derived extracellular vesicles enhanced endothelial nitric oxide synthase production in the injured lung (endothelial nitric oxide synthase/ß-actin = 0.77 ± 0.34, 0.25 ± 0.29, 0.21 ± 0.33, respectively; P = 0.005). Both primed and naïve mesenchymal stromal cell-derived extracellular vesicles enhanced E. coli phagocytosis and bacterial killing in human acute monocytic leukemia cell line (THP-1) in vitro (36.9 ± 4, 13.3 ± 8, 0.1 ± 0.01%, respectively; P = 0.0004) compared with vehicle. CONCLUSIONS: Extracellular vesicles from interferon-γ-primed human umbilical cord mesenchymal stromal cells more effectively attenuated E. coli-induced lung injury compared with extracellular vesicles from naïve mesenchymal stromal cells, potentially via enhanced macrophage phagocytosis and killing of E. coli.


Subject(s)
Acute Lung Injury/therapy , Escherichia coli Infections/complications , Extracellular Vesicles/physiology , Interferon-gamma/pharmacology , Mesenchymal Stem Cells/cytology , Umbilical Cord/cytology , Animals , Humans , Macrophages/immunology , Male , Phagocytosis , Rats , Rats, Sprague-Dawley
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 4917-4921, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946963

ABSTRACT

Cardio-respiratory activity originating in the chest creates vibrations that diffuse through the organs to the thoracic wall. The vibrational waves were detected in all six degrees of freedom by an inertial motion sensor at the xiphoid process of the sternum. Vibrational cardiography (VCG) combines the detection of vibrations via acceleration, termed as seismocardiography, and gyration, termed as gyrocardiography. The objective of this study was to determine the effect of static respiration volume on the morphology of cardiac-induced waveforms in the VCG signal. In this study, 24 subjects were tested while holding breath at peak inhalation, and at peak exhalation. Ensemble averages of the waveforms showed larger variations in the signal when the lungs were inhaled for both the primary and secondary heart sounds. Inter-subject variability was accounted for by averaging all waveforms and calculating the root mean squared value over a sliding window of 60 milliseconds. The peak amplitudes of both heart sounds were consistently larger for high lung volumes. However, the ratio of primary to the secondary heart sound was found to be inversely proportional to lung volume. These opposing effects offer a strong analysis tool for the determination of relative inhalation volume using VCG morphology alone.


Subject(s)
Heart/physiology , Lung Volume Measurements , Sternum , Vibration , Humans , Respiration
11.
Eur Respir J ; 51(4)2018 04.
Article in English | MEDLINE | ID: mdl-29519920

ABSTRACT

Human mesenchymal stem/stromal cells (MSCs) have been reported to produce an M2-like, alternatively activated phenotype in macrophages. In addition, MSCs mediate effective bacterial clearance in pre-clinical sepsis models. Thus, MSCs have a paradoxical antimicrobial and anti-inflammatory response that is not understood.Here, we studied the phenotypic and functional response of monocyte-derived human macrophages to MSC exposure in vitroMSCs induced two distinct, coexistent phenotypes: M2-like macrophages (generally elongated morphology, CD163+, acute phagosomal acidification, low NOX2 expression and limited phagosomal superoxide production) and M1-like macrophages characterised by high levels of phagosomal superoxide production. Enhanced phagosomal reactive oxygen species production was also observed in alveolar macrophages from a rodent model of pneumonia-induced sepsis. The production of M1-like macrophages was dependent on prostaglandin E2 and phosphatidylinositol 3-kinase. MSCs enhanced human macrophage phagocytosis of unopsonised bacteria and enhanced bacterial killing compared with untreated macrophages. Bacterial killing was significantly reduced by blockade of NOX2 using diphenyleneiodonium, suggesting that M1-like cells are primarily responsible for this effect. MSCs also enhanced phagocytosis and polarisation of M1-like macrophages derived from patients with severe sepsis.The enhanced antimicrobial capacity (M1-like) and inflammation resolving phenotype (M2-like) may account for the paradoxical effect of these cells in sepsis in vivo.


Subject(s)
Escherichia coli Infections/immunology , Macrophages, Alveolar/cytology , Mesenchymal Stem Cells/cytology , NADPH Oxidase 2/metabolism , Reactive Oxygen Species/metabolism , Sepsis/immunology , Animals , Cell Differentiation , Coculture Techniques , Humans , Macrophage Activation , Macrophages, Alveolar/microbiology , Mesenchymal Stem Cells/microbiology , Phagocytosis , Rats, Sprague-Dawley
12.
Allergy Asthma Clin Immunol ; 10(1): 2, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24438707

ABSTRACT

A girl was diagnosed with cystic fibrosis (CF) at birth, with repeatedly positive sweat tests and homozygous F508del mutations of her CF transmembrane conductance regulator (CFTR) gene. From an early age, her lung disease was more severe than her birth cohort peers despite aggressive treatment. At the age of 16 she was listed for lung transplantation, but prior to transplant was not on systemic corticosteroids or other immunosuppressive agents. In response to ex vivo stimulation, her pre-transplant peripheral blood T cells unexpectedly failed to produce detectable levels of IFN-γ, unlike cells from healthy controls or from another girl with CF and lung disease of comparable severity. Furthermore, naïve T cells freshly isolated from her peripheral blood showed a complete block of T cell differentiation into Th1, Th17 and Treg lineages, even in the presence of cytokines known to promote differentiation into the respective lineages. Her serology has been remarkably devoid of evidence of exposure to viruses that have been associated with T cell exhaustion. However, her freshly isolated naïve T cells showed sustained expression of markers of T cell exhaustion, which were further induced upon ex vivo stimulation, pointing to T cell exhaustion as the cause of the failure of naïve T cells to undergo differentiation in response to cytokine stimulation. Although excessive inflammation in CF lung can be both ineffective at clearing certain pathogens as well as destructive to the lung tissue itself, adequate inflammation is a component of an effective overall immune response to microbial pathogens. Our present findings suggest that intrinsic impairment of T cell differentiation may have contributed to the greater severity and more rapid progression of her CF lung disease than of the lung disease of most of her peers.

13.
Respir Res ; 14: 138, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24344776

ABSTRACT

BACKGROUND: Cystic fibrosis (CF) is a complex, multi-system, life-shortening, autosomal recessive disease most common among Caucasians. Pulmonary pathology, the major cause of morbidity and mortality in CF, is characterized by dysregulation of cytokines and a vicious cycle of infection and inflammation. This cycle causes a progressive decline in lung function, eventually resulting in respiratory failure and death. The Th17 immune response plays an active role in the pathogenesis of CF pulmonary pathology, but it is not known whether the pathophysiology of CF disease contributes to a heightened Th17 response or whether CF naïve CD4+ T lymphocytes (Th0 cells) intrinsically have a heightened predisposition to Th17 differentiation. METHODS: To address this question, Th0 cells were isolated from the peripheral blood of CF mice, human CF subjects and corresponding controls. Murine Th0 cells were isolated from single spleen cell suspensions using fluorescence-activated cell sorting. Lymphocytes from human buffy coats were isolated by gradient centrifugation and Th0 cells were further isolated using a human naïve T cell isolation kit. Th0 cells were then assessed for their capacity to differentiate along Th17, Th1 or Treg lineages in response to corresponding cytokine stimulation. The T cell responses of human peripheral blood cells were also assessed ex vivo using flow cytometry. RESULTS: Here we identify in both mouse and human CF an intrinsically enhanced predisposition of Th0 cells to differentiate towards a Th17 phenotype, while having a normal propensity for differentiation into Th1 and Treg lineages. Furthermore, we identify an active Th17 response in the peripheral blood of human CF subjects. CONCLUSIONS: We propose that these novel observations offer an explanation, at least in part, for the known increased Th17-associated inflammation of CF and the early signs of inflammation in CF lungs before any evidence of infection. Moreover, these findings point towards direct modulation of T cell responses as a novel potential therapeutic strategy for combating excessive inflammation in CF.


Subject(s)
CD4-Positive T-Lymphocytes/pathology , Cell Differentiation , Cystic Fibrosis/pathology , Phenotype , Th17 Cells/pathology , Adolescent , Adult , Animals , CD4-Positive T-Lymphocytes/metabolism , Case-Control Studies , Cells, Cultured , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/deficiency , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Disease Models, Animal , Female , Humans , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology , Th1 Cells/metabolism , Th1 Cells/pathology , Th17 Cells/metabolism , Young Adult
14.
Respir Res ; 11: 166, 2010 Nov 30.
Article in English | MEDLINE | ID: mdl-21118573

ABSTRACT

BACKGROUND: Among patients with cystic fibrosis (CF), females have worse pulmonary function and survival than males, primarily due to chronic lung inflammation and infection with Pseudomonas aeruginosa (P. aeruginosa). A role for gender hormones in the causation of the CF "gender gap" has been proposed. The female gender hormone 17ß-estradiol (E2) plays a complex immunomodulatory role in humans and in animal models of disease, suppressing inflammation in some situations while enhancing it in others. Helper T-cells were long thought to belong exclusively to either T helper type 1 (Th1) or type 2 (Th2) lineages. However, a distinct lineage named Th17 is now recognized that is induced by interleukin (IL)-23 to produce IL-17 and other pro-inflammatory Th17 effector molecules. Recent evidence suggests a central role for the IL-23/IL-17 pathway in the pathogenesis of CF lung inflammation. We used a mouse model to test the hypothesis that E2 aggravates the CF lung inflammation that occurs in response to airway infection with P. aeruginosa by a Th17-mediated mechanism. RESULTS: Exogenous E2 caused adult male CF mice with pneumonia due to a mucoid CF clinical isolate, the P. aeruginosa strain PA508 (PA508), to develop more severe manifestations of inflammation in both lung tissue and in bronchial alveolar lavage (BAL) fluid, with increased total white blood cell counts and differential and absolute cell counts of polymorphonuclear leukocytes (neutrophils). Inflammatory infiltrates and mucin production were increased on histology. Increased lung tissue mRNA levels for IL-23 and IL-17 were accompanied by elevated protein levels of Th17-associated pro-inflammatory mediators in BAL fluid. The burden of PA508 bacteria was increased in lung tissue homogenate and in BAL fluid, and there was a virtual elimination in lung tissue of mRNA for lactoferrin, an antimicrobial peptide active against P. aeruginosa in vitro. CONCLUSIONS: Our data show that E2 increases the severity of PA508 pneumonia in adult CF male mice, and suggest two potential mechanisms: enhancement of Th17-regulated inflammation and suppression of innate antibacterial defences. Although this animal model does not recapitulate all aspects of human CF lung disease, our present findings argue for further investigation of the effects of E2 on inflammation and infection with P. aeruginosa in the CF lung.


Subject(s)
Cystic Fibrosis/complications , Estrogens/adverse effects , Pneumonia, Bacterial/chemically induced , Pneumonia, Bacterial/pathology , Pseudomonas Infections/chemically induced , Pseudomonas Infections/pathology , Pseudomonas aeruginosa , Animals , Cystic Fibrosis/pathology , Disease Models, Animal , Male , Mice
15.
Am J Respir Cell Mol Biol ; 43(5): 599-606, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20042713

ABSTRACT

Glucocorticoid (GC)-responsive epithelial-mesenchymal interactions regulate lung development. The GC receptor (GR) mediates GC signaling. Mice lacking GR in all tissues die at birth of respiratory failure. To determine the specific need for epithelial GR in lung development, we bred triple transgenic mice that carry SPC/rtTA, tet-O-Cre, and floxed, but not wild-type, GR genes. When exposed to doxycycline in utero, triple transgenic (GRepi⁻) mice exhibit a Cre-mediated recombination event that inactivates the floxed GR gene in airway epithelial cells. Immunofluorescence confirmed the elimination of GR in Cre-positive airway epithelial cells of late gestation GRepi⁻ mice. Embryonic Day 18.5 pups had a relatively immature appearance with increased lung cellularity and increased pools of glycogen in the epithelium. Postnatal Day 0.5 pups had decreased viability. We used quantitative RT-PCR to demonstrate that specific elimination of epithelial immunoreactive GR in GRepi⁻ mice is associated with reduced mRNA expression for surfactant proteins (SPs) A, B, C, and D; ß- and γ-ENaC; T1α; the 10-kD Clara cell protein (CCSP); and aquaporin 5 (AQP5). Western blots confirmed reduced levels of AQP5 protein. No reduction in the levels of the GR transport protein importin (IPO)-13 was observed. Our findings demonstrate a requirement for lung epithelial cell GR in normal lung development. We speculate that impaired epithelial differentiation, leading to decreased SPs, transepithelial Na, and liquid absorption at birth, may contribute to the reduced survival of newborn mice with suppressed lung epithelial GR.


Subject(s)
Epithelium/metabolism , Epithelium/pathology , Lung/metabolism , Lung/pathology , Receptors, Glucocorticoid/deficiency , Animals , Animals, Newborn , Biomarkers/metabolism , Doxycycline/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Epithelium/drug effects , Epithelium/embryology , Gene Expression Regulation, Developmental/drug effects , Lung/embryology , Mice , Mice, Knockout , Organ Specificity/drug effects , Organogenesis/drug effects , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Pulmonary Surfactant-Associated Proteins/genetics , Pulmonary Surfactant-Associated Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Survival Analysis , Transcription Factors/metabolism
16.
Chem Biol ; 16(5): 520-30, 2009 May 29.
Article in English | MEDLINE | ID: mdl-19477416

ABSTRACT

The cystic fibrosis (CF)-causing mutant, deltaF508-CFTR, is misfolded and fails to traffic out of the endoplasmic reticulum (ER) to the cell surface. Introduction of second site mutations that disrupt a diarginine (RXR)-based ER retention motif in the first nucleotide binding domain rescues the trafficking defect of deltaF508-CFTR, supporting a role for these motifs in mediating ER retention of the major mutant. To determine if these RXR motifs mediate retention of the native deltaF508-CFTR protein in situ, we generated peptides that mimic these motifs and should antagonize mistrafficking mediated via their aberrant exposure. Here we show robust rescue of deltaF508-CFTR in cell lines and in respiratory epithelial tissues by transduction of RXR motif-mimetics, showing that abnormal accessibility of this motif is a key determinant of mistrafficking of the major CF-causing mutant.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Peptides/pharmacology , Amino Acid Motifs , Amino Acid Sequence , Cell Line , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Mutant Proteins/metabolism , Peptides/chemical synthesis , Peptides/metabolism , Respiratory Mucosa/metabolism
17.
Pediatr Pulmonol ; 43(2): 125-33, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18085690

ABSTRACT

In order to better understand the regulation of lung maturation by glucocorticoid-glucocorticoid receptor signaling, we studied glucocorticoid receptor (GR) hypomorphic mice with a mixed C57Bl6/129 sv background, in which disruption of exon 2 of the GR gene produces an N-terminal truncated GR protein. Four groups of mice were compared: homozygous mice that die at birth (non-survivors), homozygous mice that survive the neonatal period (survivors), heterozygotes and wild-type mice. Newborn non-survivors had 50% thicker airspace walls and a 46% decrease in the formation of secondary crests (the beginning of alveolar secondary septation) compared to either survivor or wild-type littermates (n = 9 mice in each group). The lung tissue to airspace ratio in homozygous mice not expressing wild-type GR (non-survivor and survivor) was increased compared to heterozygotes and wild-type mice that do express wild-type GR (0.91 +/- 0.08 vs. 0.49 +/- 0.02, n = 4 in each of the four subgroups), suggesting that complete morphological maturation of the lung is dependent on effective glucocorticoid signaling through a fully functional GR. Moreover, the relatively mature lung morphology of survivor versus non-survivor newborns suggests that a partial reduction in mesenchymal thickness is compatible with capillary remodeling, alveolar septation, and viable respiratory function after birth. Our findings suggest that in mice homozygous for disrupted GR, the severity of newborn respiratory insufficiency correlates with the degree of lung structural immaturity.


Subject(s)
Glucocorticoids/metabolism , Lung/pathology , Receptors, Glucocorticoid/genetics , Respiratory Insufficiency/genetics , Respiratory Insufficiency/pathology , Animals , Animals, Newborn , Capillaries/pathology , Endothelial Cells/pathology , Glucocorticoids/genetics , Heterozygote , Homozygote , Immunohistochemistry , Lung/metabolism , Mice , Mice, Inbred C57BL/genetics , Muscle, Smooth/pathology , Respiratory Insufficiency/metabolism , Severity of Illness Index , Signal Transduction
18.
Biol Neonate ; 90(1): 46-57, 2006.
Article in English | MEDLINE | ID: mdl-16534186

ABSTRACT

BACKGROUND: Congenital truncation of the glucocorticoid receptor (GR) is known to lead to lethal lung immaturity in newborn mice associated with increased lung cellularity (ratio of tissue to airspace) and, as we previously showed, prolonged expression of the retinoid-responsive growth factor midkine. OBJECTIVES: We sought to determine if these changes would be reversed by transgenic expression of GR exclusively in the distal airway epithelium. METHODS: Mice were generated with expression of transgenic rat (r) GR driven by the human (h) SP-C promoter, on a background of congenital GR truncation. RESULTS: Transgenic epithelial GR expression reduced lung cellularity and midkine expression to levels comparable to wild-type littermates. Nevertheless, the newborn transgenic mice still displayed respiratory failure. Moreover, epithelial expression of the GR transgene did not alter expression of a number of important markers of lung maturation. CONCLUSIONS: Our data demonstrating normalization of the lung tissue to airspace ratio in neonatal mice expressing transgenic GR in the distal airway epithelium is consistent with the concept that normal mesenchymal cell loss is due to GR-responsive stimulation from epithelial cells. However, we could find no evidence of altered apoptotic activity between the groups of mice. We speculate that correction of the severe neonatal lung phenotype of GR-deficient mice will require expression of normal GR in non-epithelial as well as epithelial tissues.


Subject(s)
Cytokines/genetics , Lung/physiology , Peptides/genetics , Promoter Regions, Genetic , Receptors, Glucocorticoid/genetics , Animals , Animals, Genetically Modified , Animals, Newborn , Base Sequence , DNA Primers , Gene Expression Regulation , Genotype , Humans , Intercellular Signaling Peptides and Proteins , Lung/cytology , Mice , Mice, Knockout , Mice, Transgenic , Midkine , Pulmonary Surfactant-Associated Protein C , Rats , Receptors, Glucocorticoid/deficiency
19.
Am J Respir Cell Mol Biol ; 28(2): 232-40, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12540491

ABSTRACT

We previously described the cloning of the late gestation lung 1 gene (LGL1), a novel glucocorticoid-inducible gene expressed in the mesenchyme of fetal lung. We report here evidence for a role of the LGL1 gene product (lgl1) in fetal rat lung airway branching morphogenesis, temporal and spatial localization of LGL1 mRNA and lgl1 protein in fetal rat lung, and a correction of the previously published LGL1 sequence. Both the mRNA and protein were detected during fetal lung development. LGL1 mRNA was detected from gestational Day 12 by reverse transcriptase-polymerase chain reaction, and from Day 13 by in situ hybridization. lgl1 protein was detected from Day 18 by Western analysis and from Day 16 by immunohistochemistry. The types of cells expressing LGL1 mRNA and lgl1 protein were assessed by immunohistochemical staining of adjacent serial tissue sections for markers of mesenchymal (vimentin) and smooth muscle (alpha-actin) cells. As gestation advanced, increasing amounts of mRNA and protein were expressed in these cells. In support of a role for lgl1 in airway branching morphogenesis, antisense (but neither sense nor scrambled) oligodeoxynucleotides directed against LGL1 inhibited airway branching in fetal rat lung buds in explant culture, in a dose- and time-dependent manner. The levels of lgl1 protein and LGL1 mRNA expression were decreased in those explants that had inhibited airway branching, compared with the uninhibited controls. Our findings suggest that lgl1 plays an important role in fetal airway branching morphogenesis.


Subject(s)
Lung/embryology , Lung/metabolism , Oligodeoxyribonucleotides, Antisense/genetics , Oligodeoxyribonucleotides, Antisense/pharmacology , Proteins/antagonists & inhibitors , Proteins/genetics , Animals , Base Sequence , Culture Techniques , Immunohistochemistry , In Situ Hybridization , Lung/drug effects , Morphogenesis/drug effects , Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats
20.
Am J Respir Cell Mol Biol ; 28(1): 33-41, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12495930

ABSTRACT

The glucocorticoids (GC) and retinoids (RA) modulate branching morphogenesis and cytodifferentiation in the developing lung. We investigated downstream target genes that link glucocorticoid stimulation to the achievement of a mature lung in glucocorticoid receptor (GR) knockout mice. All GR(null) mice and approximately 80% of mice homozygous for a hypomorphic allele (GR(hypo)) die shortly after birth of respiratory failure. cDNA microarray analysis showed organ-specific upregulation of the retinoic acid responsive gene midkine (MK) and its chondroitin-sulfate binding partner PG-M/versican at fetal day 18 and at neonatal day 1 in lungs of GR(hypo) mice, and at neonatal day 1 in lungs of GR(null) mice. By contrast, lung MK and PG-M/versican were downregulated in these mice at fetal day 16.5. In situ hybridization studies showed a dramatic decrease in MK and PG-M/versican RNA between days 16.5 and 17.5 in GR(WT) but not in GR(null) mice. Continued diffuse and robust expression of MK protein was observed in GR(null) mice at neonatal day 1. These findings suggest that MK may contribute to the dysmature lung phenotype in GR-deficient mice. Exposure of cultured day 21 fetal rat lung cells to GC downregulated MK, whereas RA enhanced MK expression. Our findings demonstrate the coincident modulation of expression of MK at the same developmental time point by both GC and RA, providing a potential mechanism for the integration of GC and RA effects on fetal lung development.


Subject(s)
Carrier Proteins/physiology , Cytokines , Glucocorticoids/pharmacology , Lung/drug effects , Retinoids/pharmacology , Animals , Blotting, Northern , Cells, Cultured , DNA, Complementary , Immunohistochemistry , In Situ Hybridization , Lung/embryology , Lung/physiology , Mice , Midkine , Oligonucleotide Array Sequence Analysis , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...