Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 806(Pt 3): 151248, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34715213

ABSTRACT

Silver nanomaterials (Ag NMs) have been used in a variety of commercial products to take advantage of their antimicrobial properties. However, there are concerns that these AgNMs can be released during/after use and enter wastewater streams, potentially impacting aquatic systems or accumulating in wastewater biosolids. Biosolids, which are a residual of wastewater treatment processes, have been found to contain AgNMs and are frequently used as agricultural fertilizer. Since the function of soil microbial communities is imperative to nutrient cycling and agricultural productivity, it is important to characterize and assess the effects that silver nanomaterials could have in agricultural soils. In this study agricultural soil was amended with pristine engineered (PVP-coated or uncoated AgNMs), aged silver (sulphidized or released from textiles) nanomaterials, and ionic silver to determine the fate and toxicity over the course of three months. Exposures were carried out at various environmentally relevant concentrations (1 and 10 mg Ag/kg soil) representing between 30 to over 800 years of equivalent biosolid loadings. Over thirteen different methodologies and measures were used throughout this study to assess for potential effects of the silver nanomaterials on soil, including microbial community composition, average well colour development (AWCD) and enzymatic activity. Overall, the AgNM exposures did not exhibit significant toxic effects to the soil microbial communities in terms of density, activity, function and diversity. However, the positive ionic silver treatment (100 mg Ag/kg soil) resulted in suppression to microbial activity while also resulting in significantly higher populations of Frankia alni (nitrogen-fixer) and Arenimonas malthae (phytopathogen) as compared to the negative control (p < 0.05, Tukey HSD) which warrants further investigation.


Subject(s)
Metal Nanoparticles , Microbiota , Nanostructures , Soil Pollutants , Metal Nanoparticles/toxicity , Nanostructures/toxicity , Silver/toxicity , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity , Textiles
3.
Water Res ; 46(16): 5305-15, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22828383

ABSTRACT

Sludge treatment wetlands are mainly used to reduce the volume of activated sludge, and the pollutants at the outlet are generally returned to the wastewater treatment plant. However, in cases where sludges are produced far from treatment plants not only must the sludge be treated, but the discharge of pollutants into the surrounding environment must also be limited. The aim of this study was to evaluate the efficiency of different plant species in optimising pollutant removal in a decentralised sludge treatment wetland. In addition, a new system design was assessed, in which the wetland was not completely drained, and a saturated layer was created using an overflow. The experimental setup consisted of 16 mesocosms in total, planted with monocultures of Phragmites australis, Typha angustifolia and Scirpus fluviatilis, and unplanted controls, each in four replicates. The experiment was conducted during the third summer of operation after setup. The system was fed with highly concentrated fish farm sludge at a load of 30 kg of total solids m(-2) yr(-1). Results showed that such wetlands were highly efficient, with removal rates between 94% and 99% for most pollutants. Planted systems generally outperformed the unplanted control, with a significantly lower mass of pollutants at the outlet of the sludge treatment wetland planted with Phragmites, followed by those with Typha and then Scirpus. The distinct influence of plant species on pollution removal was explained by the sequestration of nitrogen and phosphorus in plant tissues and by the rhizosphere effect, which enhance the biodegradation of organic matter, allowed the nitrification process and created redox conditions favourable to the sorption of phosphorus. Filtration and evapotranspiration rates played a major role in limiting the discharge of pollutants, and the impact was enhanced by the fact that the sludge treatment wetland was not completely drained.


Subject(s)
Aquaculture , Sewage/analysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/pharmacokinetics , Water Quality/standards , Wetlands , Analysis of Variance , Biomass , Cyperaceae/metabolism , Poaceae/metabolism , Typhaceae/metabolism , Water Loss, Insensible/physiology
4.
Water Res ; 46(9): 3005-13, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22483709

ABSTRACT

The effects of design and operational factors on the dynamics of ciliated protozoa in constructed wetlands (CWs) treating wastewater remain poorly known, although bacterivory by ciliates could have important implications for nutrient cycling in these systems. We conducted a greenhouse experiment with eight wetland mesocosms (1 m(2)) fed with synthetic wastewater to assess how macrophyte species (Phragmites australis, Phalaris arundinacea, and Typha angustifolia), location within CW (longitudinal, depth), and temporal fluctuations affect ciliate abundance and diversity. Urosoma similis was the most abundant taxon, but Hypotrichidae, Scuticociliates, Drepomonas revoluta, and Acineria uncinata were also abundant. Longitudinal location had the highest impact on ciliate dynamics, with more abundant and diverse communities in the initial section of wetlands. P. australis/T. angustifolia and P. arundinacea had the most and least favorable conditions for ciliates, respectively, but differences among macrophytes were mostly not significant. Ciliate abundance appeared to decline from August to November, most likely because of lower temperature and plant inputs of organic matter and oxygen. Depth had no apparent impact on ciliate dynamics, suggesting that sampling at multiple depths in CW is not necessary to adequately monitor ciliate communities. Overall, our results suggest that macrophytes, location, and date of sampling influenced ciliated dynamics but stress the need for direct manipulative experiments of ciliate abundance, diversity, and composition conducted on a full annual cycle to better understand the impact of ciliates on nutrient cycling in CWs. This is especially true to determine if the associations found in our principal component analysis are robust.


Subject(s)
Ciliophora , Water Movements , Wetlands , Biodiversity
SELECTION OF CITATIONS
SEARCH DETAIL
...