Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893833

ABSTRACT

High-performance photovoltaic devices require active photoanodes with superior optoelectric properties. In this study, we synthesized neodymium ruthenate, Nd2Ru2O7 (NRO), and gadolinium ruthenate pyrochlore oxides, Gd2Ru2O7 (GRO), via the solid-state reaction technique, showcasing their potential as promising candidates for photoanode absorbers to enhance the efficiency of dye-sensitized solar cells. A structural analysis revealed predominantly cubic symmetry phases for both materials within the Fd-3m space group, along with residual orthorhombic symmetry phases (Nd3RuO7 and Gd3RuO7, respectively) refined in the Pnma space group. Raman spectroscopy further confirmed these phases, identifying distinct active modes of vibration in the predominant pyrochlore oxides. Additionally, a scanning electron microscopy (SEM) analysis coupled with energy-dispersive X-ray spectroscopy (EDX) elucidated the morphology and chemical composition of the compounds. The average grain size was determined to be approximately 0.5 µm for GRO and 1 µm for NRO. Electrical characterization via I-V measurements revealed that these pyrochlore oxides exhibit n-type semiconductor behavior, with conductivity estimated at 1.5 (Ohm·cm)-1 for GRO and 4.5 (Ohm·cm)-1 for NRO. Collectively, these findings position these metallic oxides as promising absorber materials for solar panels.

2.
Materials (Basel) ; 15(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35955158

ABSTRACT

Ferroelectric property that induces electrocaloric effect was investigated in Ba(GexTi1-x)O3 ceramics, known as BTGx. X-ray diffraction analysis shows pure perovskite phases in tetragonal symmetry compatible with the P4mm (No. 99) space group. Dielectric permittivity exhibits first-order ferroelectric-paraelectric phase transition, confirmed by specific heat measurements, similar to that observed in BaTiO3 (BTO) crystal. Curie temperature varies weakly as a function of Ge-content. Using the direct and indirect method, we confirmed that the adiabatic temperature change ΔT reached its higher value of 0.9 K under 8 kV/cm for the composition BTG6, corresponding to an electrocaloric responsivity ΔT/ΔE of 1.13 × 10-6 K.m/V. Such electrocaloric responsivity significantly exceeds those obtained so far in other barium titanate-based lead-free electrocaloric ceramic materials. Energy storage investigations show promising results: stored energy density of ~17 mJ/cm3 and an energy efficiency of ~88% in the composition BTG5. These results classify the studied materials as candidates for cooling devices and energy storage applications.

3.
Nanomaterials (Basel) ; 10(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31861853

ABSTRACT

Exclusive and unprecedented interest was accorded in this paper to the synthesis of BiFeO3 nanopowders by the polyol process. The synthesis protocol was explored and adjusted to control the purity and the grain size of the final product. The optimum parameters were carefully established and an average crystallite size of about 40 nm was obtained. XRD and Mössbauer measurements proved the high purity of the synthesized nanostructurated powders and confirmed the persistence of the rhombohedral R3c symmetry. The first studies on the magnetic properties show a noticeable widening of the hysteresis loop despite the remaining cycloidal magnetic structure, promoting the enhancement of the ferromagnetic order and consequently the magnetoelectric coupling compared to micrometric size powders.

4.
Materials (Basel) ; 11(8)2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30110967

ABSTRACT

This article is devoted to the investigation of the dielectric and repolarization properties of barium zirconate and barium titanate BaZrO3/BaTiO3 superlattices with a period of 13.322 nm on a monocrystal magnesium oxide (MgO) substrate. Synthesized superlattices demonstrated a ferroelectric phase transition at a temperature of approximately 393 °C, which is far higher than the Curie temperature of BaTiO3 thin films and bulk samples. The dielectric permittivity of the superlattice reached more than 104 at maximum. As the electric field frequency increased, the dielectric constant of the studied superlattice decreased over the entire study temperature range, but position of the maximum dielectric constant remained the same with changing frequency. The temperature dependence of the inverse dielectric permittivity 1/ε(T) for the studied samples shows that, in the investigated superlattice, both Curie⁻Weiss law and the law of "two" were followed. Additionally, the ε(T) dependences showed practically no temperature hysteresis with heating and cooling. Samples of synthesized superlattices had a relatively small internal bias field, which was directed from the superlattice towards the substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...