Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Mol Oncol ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790138

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, characterized by late diagnosis and poor treatment response. Surgery is the only curative approach, only available to early-diagnosed patients. Current therapies have limited effects, cause severe toxicities, and minimally improve overall survival. Understanding of splicing machinery alterations in PDAC remains incomplete. Here, we comprehensively examined 59 splicing machinery components, uncovering dysregulation in pre-mRNA processing factor 8 (PRPF8) and RNA-binding motif protein X-linked (RBMX). Their downregulated expression was linked to poor prognosis and malignancy features, including tumor stage, invasion and metastasis, and associated with poorer survival and the mutation of key PDAC genes. Experimental modulation of these splicing factors in pancreatic cancer cell lines reverted their expression to non-tumor levels and resulted in decreased key tumor-related features. These results provide evidence that the splicing machinery is altered in PDAC, wherein PRPF8 and RBMX emerge as candidate actionable therapeutic targets.

3.
Cell Rep ; 43(3): 113924, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38507413

ABSTRACT

The posttranslational modification of proteins critically influences many biological processes and is a key mechanism that regulates the function of the RNA-binding protein Hu antigen R (HuR), a hub in liver cancer. Here, we show that HuR is SUMOylated in the tumor sections of patients with hepatocellular carcinoma in contrast to the surrounding tissue, as well as in human cell line and mouse models of the disease. SUMOylation of HuR promotes major cancer hallmarks, namely proliferation and invasion, whereas the absence of HuR SUMOylation results in a senescent phenotype with dysfunctional mitochondria and endoplasmic reticulum. Mechanistically, SUMOylation induces a structural rearrangement of the RNA recognition motifs that modulates HuR binding affinity to its target RNAs, further modifying the transcriptomic profile toward hepatic tumor progression. Overall, SUMOylation constitutes a mechanism of HuR regulation that could be potentially exploited as a therapeutic strategy for liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/metabolism , Disease Models, Animal , ELAV-Like Protein 1/metabolism , Liver Neoplasms/pathology , RNA/metabolism , Sumoylation
4.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396713

ABSTRACT

Carcinoid heart disease (CHD) is a frequent and life-threatening complication in patients with carcinoid tumors. Its clinical management is challenging is some cases since serotonin-induced valve fibrosis leads to heart failure. Telotristat is an inhibitor of tryptophan-hydroxylase (TPH), a key enzyme in serotonin production. Telotristat use in patients with carcinoid syndrome and uncontrollable diarrhea under somatostatin analogs is approved, but its specific role in patients with CHD is still not clear. IN this context, we aimed to explore the effect of telotristat in heart fibrosis using a mouse model of serotonin-secreting metastasized neuroendocrine neoplasm (NEN). To this aim, four treatment groups (n = 10/group) were evaluated: control, monthly octreotide, telotristat alone, and telotristat combined with octreotide. Plasma serotonin and NT-proBNP levels were determined. Heart fibrosis was histologically evaluated after 6 weeks of treatment or when an individual mouse's condition was close to being terminal. Heart fibrosis was observed in all groups. Non-significant reductions in primary tumor growth were observed in all of the treated groups. Feces volume was increased in all groups. A non-significant decrease in feces volume was observed in the octreotide or telotristat-treated groups, while it was significantly reduced with the combined treatment at the end of the study compared with octreotide (52 g reduction; p < 0.01) and the control (44.5 g reduction; p = 0.05). Additionally, plasma NT-proBNP decreased in a non-significant, but clinically relevant, manner in the octreotide (28.2% reduction), telotristat (45.9% reduction), and the octreotide + telotristat (54.1% reduction) treatment groups. No significant changes were observed in plasma serotonin levels. A similar non-significant decrease in heart valve fibrosis was observed in the three treated groups. In conclusion, Telotristat alone and especially in combination with octreotide decreases NT-proBNP levels in a mouse model of serotonin-secreting metastasized NEN, when compared with the control and octreotide, but its effect on heart valve fibrosis (alone and in combination) was not superior to octreotide in monotherapy.


Subject(s)
Carcinoid Heart Disease , Neuroendocrine Tumors , Phenylalanine/analogs & derivatives , Pyrimidines , Humans , Octreotide/pharmacology , Octreotide/therapeutic use , Carcinoid Heart Disease/drug therapy , Serotonin , Neuroendocrine Tumors/drug therapy , Fibrosis
5.
Mol Ther Nucleic Acids ; 35(1): 102090, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38187140

ABSTRACT

Pancreatic neuroendocrine tumors (PanNETs) comprise a heterogeneous group of tumors with growing incidence. Recent molecular analyses provided a precise picture of their genomic and epigenomic landscape. Splicing dysregulation is increasingly regarded as a novel cancer hallmark influencing key tumor features. We have previously demonstrated that splicing machinery is markedly dysregulated in PanNETs. Here, we aimed to elucidate the molecular and functional implications of CUGBP ELAV-like family member 4 (CELF4), one of the most altered splicing factors in PanNETs. CELF4 expression was determined in 20 PanNETs, comparing tumor and non-tumoral adjacent tissue. An RNA sequencing (RNA-seq) dataset was analyzed to explore CELF4-linked interrelations among clinical features, gene expression, and splicing events. Two PanNET cell lines were employed to assess CELF4 function in vitro and in vivo. PanNETs display markedly upregulated CELF4 expression, which is closely associated with malignancy features, altered expression of key tumor players, and distinct splicing event profiles. Modulation of CELF4 influenced proliferation in vitro and reduced in vivo xenograft tumor growth. Interestingly, functional assays and RNA-seq analysis revealed that CELF4 silencing altered mTOR signaling pathway, enhancing the effect of everolimus. We demonstrate that CELF4 is dysregulated in PanNETs, where it influences tumor development and aggressiveness, likely by modulating the mTOR pathway, suggesting its potential as therapeutic target.

6.
Cancer Lett ; 584: 216604, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38244911

ABSTRACT

Novel biomarkers and therapeutic strategies for prostate-cancer (PCa) are required to overcome its lethal progression. The dysregulation/implication of the RNA-Exosome-complex (REC; cellular machinery controlling the 3'-5'processing/degradation of most RNAs) in different cancer-types, including PCa, is poorly known. Herein, different cellular/molecular/preclinical approaches with human PCa-samples (tissues and/or plasma of 7 independent cohorts), and in-vitro/in-vivo PCa-models were used to comprehensively characterize the REC-profile and explore its role in PCa. Moreover, isoginkgetin (REC-inhibitor) effects were evaluated on PCa-cells. We demonstrated a specific dysregulation of the REC-components in PCa-tissues, identifying the Poly(A)-Binding-Protein-Nuclear 1 (PABPN1) factor as a critical regulator of major cancer hallmarks. PABPN1 is consistently overexpressed in different human PCa-cohorts and associated with poor-progression, invasion and metastasis. PABPN1 silencing decreased relevant cancer hallmarks in multiple PCa-models (proliferation/migration/tumourspheres/colonies, etc.) through the modulation of key cancer-related lncRNAs (PCA3/FALEC/DLEU2) and mRNAs (CDK2/CDK6/CDKN1A). Plasma PABPN1 levels were altered in patients with metastatic and tumour-relapse. Finally, pharmacological inhibition of REC-activity drastically inhibited PCa-cell aggressiveness. Altogether, the REC is drastically dysregulated in PCa, wherein this novel molecular event/mechanism, especially PABPN1 alteration, may be potentially exploited as a novel prognostic and therapeutic tool for PCa.


Subject(s)
Exosomes , Prostatic Neoplasms , Male , Humans , Exosome Multienzyme Ribonuclease Complex , Exosomes/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Neoplasm Recurrence, Local , Prostatic Neoplasms/pathology , RNA, Messenger , Poly(A)-Binding Protein I/metabolism
7.
Front Endocrinol (Lausanne) ; 14: 1243906, 2023.
Article in English | MEDLINE | ID: mdl-37867510

ABSTRACT

Background: Obesity (OB) is a chronic metabolic disease with important associated comorbidities and mortality. Vitamin D supplementation is frequently administered after bariatric surgery (BS), so as to reduce OB-related complications, maybe including chronic inflammation. Aim: This study aimed to explore relations between vitamin D metabolites and components of the inflammasome machinery in OB before and after BS and their relations with the improvement of metabolic comorbidities. Patients and methods: Epidemiological/clinical/anthropometric/biochemical evaluation was performed in patients with OB at baseline and 6 months after BS. Evaluation of i) vitamin-D metabolites in plasma and ii) components of the inflammasome machinery and inflammatory-associated factors [NOD-like-receptors (NLRs), inflammasome-activation-components, cytokines and inflammation/apoptosis-related components, and cell-cycle and DNA-damage regulators] in peripheral blood mononuclear cells (PBMCs) was performed at baseline and 6 months after BS. Clinical and molecular correlations/associations were analyzed. Results: Significant correlations between vitamin D metabolites and inflammasome-machinery components were observed at baseline, and these correlations were significantly reduced 6 months after BS in parallel to a decrease in inflammation markers, fat mass, and body weight. Treatment with calcifediol remarkably increased 25OHD levels, despite 24,25(OH)2D3 remained stable after BS. Several inflammasome-machinery components were associated with improvement in metabolic comorbidities, especially hypertension and dyslipidemia. Conclusion: The beneficial effects of vitamin D on OB-related comorbidities after BS patients are associated with significant changes in the molecular expression of key inflammasome-machinery components. The expression profile of these inflammasome components can be dynamically modulated in PBMCs after BS and vitamin D supplementation, suggesting that this profile could likely serve as a sensor and early predictor of the reversal of OB-related complications after BS.


Subject(s)
Bariatric Surgery , Obesity, Morbid , Humans , Calcifediol , Inflammasomes , Leukocytes, Mononuclear , Obesity/complications , Obesity/surgery , Obesity, Morbid/surgery , Vitamin D , Inflammation
8.
Rev Endocr Metab Disord ; 24(6): 1165-1187, 2023 12.
Article in English | MEDLINE | ID: mdl-37819510

ABSTRACT

Obesity is a weight-related disorder characterized by excessive adipose tissue growth and dysfunction which leads to the onset of a systemic chronic low-grade inflammatory state. Likewise, inflammation is considered a classic cancer hallmark affecting several steps of carcinogenesis and tumor progression. In this regard, novel molecular complexes termed inflammasomes have been identified which are able to react to a wide spectrum of insults, impacting several metabolic-related disorders, but their contribution to cancer biology remains unclear. In this context, prostate cancer (PCa) has a markedly inflammatory component, and patients frequently are elderly individuals who exhibit weight-related disorders, being obesity the most prevalent condition. Therefore, inflammation, and specifically, inflammasome complexes, could be crucial players in the interplay between PCa and metabolic disorders. In this review, we will: 1) discuss the potential role of each inflammasome component (sensor, molecular adaptor, and targets) in PCa pathophysiology, placing special emphasis on IL-1ß/NF-kB pathway and ROS and hypoxia influence; 2) explore the association between inflammasomes and obesity, and how these molecular complexes could act as the cornerstone between the obesity and PCa; and, 3) compile current clinical trials regarding inflammasome targeting, providing some insights about their potential use in the clinical practice.


Subject(s)
Inflammasomes , Prostatic Neoplasms , Male , Humans , Aged , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Inflammation/metabolism , Obesity/metabolism
9.
Int J Mol Sci ; 24(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894825

ABSTRACT

Obesity (OB) is a metabolic disorder characterized by adipose tissue dysfunction that has emerged as a health problem of epidemic proportions in recent decades. OB is associated with multiple comorbidities, including some types of cancers. Specifically, prostate cancer (PCa) has been postulated as one of the tumors that could have a causal relationship with OB. Particularly, a specialized adipose tissue (AT) depot known as periprostatic adipose tissue (PPAT) has gained increasing attention over the last few years as it could be a key player in the pathophysiological interaction between PCa and OB. However, to date, no studies have defined the most appropriate internal reference genes (IRGs) to be used in gene expression studies in this AT depot. In this work, two independent cohorts of PPAT samples (n = 20/n = 48) were used to assess the validity of a battery of 15 literature-selected IRGs using two widely used techniques (reverse transcription quantitative PCR [RT-qPCR] and microfluidic-based qPCR array). For this purpose, ΔCt method, GeNorm (v3.5), BestKeeper (v1.0), NormFinder (v.20.0), and RefFinder software were employed to assess the overall trends of our analyses. LRP10, PGK1, and RPLP0 were identified as the best IRGs to be used for gene expression studies in human PPATs, specifically when considering PCa and OB conditions.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Obesity/genetics , Software , Adipose Tissue/pathology , Reference Standards , LDL-Receptor Related Proteins , Phosphoglycerate Kinase
10.
EBioMedicine ; 90: 104484, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36907105

ABSTRACT

BACKGROUND: Glioblastoma is one of the most devastating and incurable cancers due to its aggressive behaviour and lack of available therapies, being its overall-survival from diagnosis ∼14-months. Thus, identification of new therapeutic tools is urgently needed. Interestingly, metabolism-related drugs (e.g., metformin/statins) are emerging as efficient antitumour agents for several cancers. Herein, we evaluated the in vitro/in vivo effects of metformin and/or statins on key clinical/functional/molecular/signalling parameters in glioblastoma patients/cells. METHODS: An exploratory-observational-randomized retrospective glioblastoma patient cohort (n = 85), human glioblastoma/non-tumour brain human cells (cell lines/patient-derived cell cultures), mouse astrocytes progenitor cell cultures, and a preclinical xenograft glioblastoma mouse model were used to measure key functional parameters, signalling-pathways and/or antitumour progression in response to metformin and/or simvastatin. FINDINGS: Metformin and simvastatin exerted strong antitumour actions in glioblastoma cell cultures (i.e., proliferation/migration/tumoursphere/colony-formation/VEGF-secretion inhibition and apoptosis/senescence induction). Notably, their combination additively altered these functional parameters vs. individual treatments. These actions were mediated by the modulation of key oncogenic signalling-pathways (i.e., AKT/JAK-STAT/NF-κB/TGFß-pathways). Interestingly, an enrichment analysis uncovered a TGFß-pathway activation, together with AKT inactivation, in response to metformin + simvastatin combination, which might be linked to an induction of the senescence-state, the associated secretory-phenotype, and to the dysregulation of spliceosome components. Remarkably, the antitumour actions of metformin + simvastatin combination were also observed in vivo [i.e., association with longer overall-survival in human, and reduction in tumour-progression in a mouse model (reduced tumour-size/weight/mitosis-number, and increased apoptosis)]. INTERPRETATION: Altogether, metformin and simvastatin reduce aggressiveness features in glioblastomas, being this effect significantly more effective (in vitro/in vivo) when both drugs are combined, offering a clinically relevant opportunity that should be tested for their use in humans. FUNDING: Spanish Ministry of Science, Innovation and Universities; Junta de Andalucía; CIBERobn (CIBER is an initiative of Instituto de Salud Carlos III, Spanish Ministry of Health, Social Services and Equality).


Subject(s)
Glioblastoma , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Metformin , Humans , Mice , Animals , Metformin/pharmacology , Metformin/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/pathology , Proto-Oncogene Proteins c-akt , Simvastatin/pharmacology , Simvastatin/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Retrospective Studies , Transforming Growth Factor beta/pharmacology , Cell Line, Tumor , Cell Proliferation
11.
Exp Mol Med ; 55(1): 132-142, 2023 01.
Article in English | MEDLINE | ID: mdl-36609600

ABSTRACT

Hepatocellular carcinoma (HCC) pathogenesis is associated with alterations in splicing machinery components (spliceosome and splicing factors) and aberrant expression of oncogenic splice variants. We aimed to analyze the expression and potential role of the spliceosome component PRPF8 (pre-mRNA processing factor 8) in HCC. PRPF8 expression (mRNA/protein) was analyzed in a retrospective cohort of HCC patients (n = 172 HCC and nontumor tissues) and validated in two in silico cohorts (TCGA and CPTAC). PRPF8 expression was silenced in liver cancer cell lines and in xenograft tumors to understand the functional and mechanistic consequences. In silico RNAseq and CLIPseq data were also analyzed. Our results indicate that PRPF8 is overexpressed in HCC and associated with increased tumor aggressiveness (patient survival, etc.), expression of HCC-related splice variants, and modulation of critical genes implicated in cancer-related pathways. PRPF8 silencing ameliorated aggressiveness in vitro and decreased tumor growth in vivo. Analysis of in silico CLIPseq data in HepG2 cells demonstrated that PRPF8 binds preferentially to exons of protein-coding genes, and RNAseq analysis showed that PRPF8 silencing alters splicing events in multiple genes. Integrated and in vitro analyses revealed that PRPF8 silencing modulates fibronectin (FN1) splicing, promoting the exclusion of exon 40.2, which is paramount for binding to integrins. Consistent with this finding, PRPF8 silencing reduced FAK/AKT phosphorylation and blunted stress fiber formation. Indeed, HepG2 and Hep3B cells exhibited a lower invasive capacity in membranes treated with conditioned medium from PRPF8-silenced cells compared to medium from scramble-treated cells. This study demonstrates that PRPF8 is overexpressed and associated with aggressiveness in HCC and plays important roles in hepatocarcinogenesis by altering FN1 splicing, FAK/AKT activation and stress fiber formation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Fibronectins/genetics , Fibronectins/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Retrospective Studies , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
12.
Transl Res ; 253: 68-79, 2023 03.
Article in English | MEDLINE | ID: mdl-36089245

ABSTRACT

Prostate cancer (PCa) is one of the leading causes of cancer-related deaths among men. Consequently, the identification of novel molecular targets for treatment is urgently needed to improve patients' outcomes. Our group recently reported that some elements of the cellular machinery controlling alternative-splicing might be useful as potential novel therapeutic tools against advanced PCa. However, the presence and functional role of RBM22, a key spliceosome component, in PCa remains unknown. Therefore, RBM22 levels were firstly interrogated in 3 human cohorts and 2 preclinical mouse models (TRAMP/Pbsn-Myc). Results were validated in in silico using 2 additional cohorts. Then, functional effects in response to RBM22 overexpression (proliferation, migration, tumorspheres/colonies formation) were tested in PCa models in vitro (LNCaP, 22Rv1, and PC-3 cell-lines) and in vivo (xenograft). High throughput methods (ie, RNA-seq, nCounter PanCancer Pathways Panel) were performed in RBM22 overexpressing cells and xenograft tumors. We found that RBM22 levels were down-regulated (mRNA and protein) in PCa samples, and were inversely associated with key clinical aggressiveness features. Consistently, a gradual reduction of RBM22 from non-tumor to poorly differentiated PCa samples was observed in transgenic models (TRAMP/Pbsn-Myc). Notably, RBM22 overexpression decreased aggressiveness features in vitro, and in vivo. These actions were associated with the splicing dysregulation of numerous genes and to the downregulation of critical upstream regulators of cell-cycle (i.e., CDK1/CCND1/EPAS1). Altogether, our data demonstrate that RBM22 plays a critical pathophysiological role in PCa and invites to suggest that targeting negative regulators of RBM22 expression/activity could represent a novel therapeutic strategy to tackle this disease.


Subject(s)
Alternative Splicing , Prostatic Neoplasms , Male , Humans , Animals , Mice , Alternative Splicing/genetics , Prostatic Neoplasms/metabolism , RNA Splicing , Spliceosomes , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic
13.
Wiley Interdiscip Rev RNA ; 14(3): e1760, 2023.
Article in English | MEDLINE | ID: mdl-36063028

ABSTRACT

Bladder cancer is the most common malignancy of the urinary tract worldwide. The therapeutic options to tackle this disease comprise surgery, intravesical or systemic chemotherapy, and immunotherapy. Unfortunately, a wide number of patients ultimately become resistant to these treatments and develop aggressive metastatic disease, presenting a poor prognosis. Therefore, the identification of novel therapeutic approaches to tackle this devastating pathology is urgently needed. However, a significant limitation is that the progression and drug response of bladder cancer is strongly associated with its intrinsic molecular heterogeneity. In this sense, RNA splicing is recently gaining importance as a critical hallmark of cancer since can have a significant clinical value. In fact, a profound dysregulation of the splicing process has been reported in bladder cancer, especially in the expression of certain key splicing variants and circular RNAs with a potential clinical value as diagnostic/prognostic biomarkers or therapeutic targets in this pathology. Indeed, some authors have already evidenced a profound antitumor effect by targeting some splicing factors (e.g., PTBP1), mRNA splicing variants (e.g., PKM2, HYAL4-v1), and circular RNAs (e.g., circITCH, circMYLK), which illustrates new possibilities to significantly improve the management of this pathology. This review represents the first detailed overview of the splicing process and its alterations in bladder cancer, and highlights opportunities for the development of novel diagnostic/prognostic biomarkers and their clinical potential for the treatment of this devastating cancer type. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.


Subject(s)
Alternative Splicing , Urinary Bladder Neoplasms , Humans , Alternative Splicing/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , RNA/metabolism , Biomarkers/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism
14.
Transl Res ; 251: 63-73, 2023 01.
Article in English | MEDLINE | ID: mdl-35882361

ABSTRACT

Dysregulation of the splicing machinery is emerging as a hallmark in cancer due to its association with multiple dysfunctions in tumor cells. Inappropriate function of this machinery can generate tumor-driving splicing variants and trigger oncogenic actions. However, its role in pancreatic neuroendocrine tumors (PanNETs) is poorly defined. In this study we aimed to characterize the expression pattern of a set of splicing machinery components in PanNETs, and their relationship with aggressiveness features. A qPCR-based array was first deployed to determine the expression levels of components of the major (n = 13) and minor spliceosome (n = 4) and associated splicing factors (n = 27), using a microfluidic technology in 20 PanNETs and non-tumoral adjacent samples. Subsequently, in vivo and in vitro models were applied to explore the pathophysiological role of NOVA1. Expression analysis revealed that a substantial proportion of splicing machinery components was altered in tumors. Notably, key splicing factors were overexpressed in PanNETs samples, wherein their levels correlated with clinical and malignancy features. Using in vivo and in vitro assays, we demonstrate that one of those altered factors, NOVA1, is tightly related to cell proliferation, alters pivotal signaling pathways and interferes with responsiveness to drug treatment in PanNETs, suggesting a role for this factor in the aggressiveness of these tumors and its suitability as therapeutic target. Altogether, our results unveil a severe alteration of the splicing machinery in PanNETs and identify the putative relevance of NOVA1 in tumor development/progression, which could provide novel avenues to develop diagnostic biomarkers and therapeutic tools for this pathology.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/therapy , RNA-Binding Proteins/genetics , Cell Proliferation/genetics , RNA Splicing Factors/genetics , Pancreatic Neoplasms/pathology , Neuro-Oncological Ventral Antigen
15.
Int J Mol Sci ; 23(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36361790

ABSTRACT

Somatostatin (SST), cortistatin (CORT), and their receptors (SSTR1-5/sst5TMD4-TMD5) comprise a multifactorial hormonal system involved in the regulation of numerous pathophysiological processes. Certain components of this system are dysregulated and play critical roles in the development/progression of different endocrine-related cancers. However, the presence and therapeutic role of this regulatory system in prostate cancer (PCa) remain poorly explored. Accordingly, we performed functional (proliferation/migration/colonies-formation) and mechanistic (Western-blot/qPCR/microfluidic-based qPCR-array) assays in response to SST and CORT treatments and CORT-silencing (using specific siRNA) in different PCa cell models [androgen-dependent (AD): LNCaP; androgen-independent (AI)/castration-resistant PCa (CRPC): 22Rv1 and PC-3], and/or in the normal-like prostate cell-line RWPE-1. Moreover, the expression of SST/CORT system components was analyzed in PCa samples from two different patient cohorts [internal (n = 69); external (Grasso, n = 88)]. SST and CORT treatment inhibited key functional/aggressiveness parameters only in AI-PCa cells. Mechanistically, antitumor capacity of SST/CORT was associated with the modulation of oncogenic signaling pathways (AKT/JNK), and with the significant down-regulation of critical genes involved in proliferation/migration and PCa-aggressiveness (e.g., MKI67/MMP9/EGF). Interestingly, CORT was highly expressed, while SST was not detected, in all prostate cell-lines analyzed. Consistently, endogenous CORT was overexpressed in PCa samples (compared with benign-prostatic-hyperplasia) and correlated with key clinical (i.e., metastasis) and molecular (i.e., SSTR2/SSTR5 expression) parameters. Remarkably, CORT-silencing drastically enhanced proliferation rate and blunted the antitumor activity of SST-analogues (octreotide/pasireotide) in AI-PCa cells. Altogether, we provide evidence that SST/CORT system and SST-analogues could represent a potential therapeutic option for PCa, especially for CRPC, and that endogenous CORT could act as an autocrine/paracrine regulator of PCa progression.


Subject(s)
Neuropeptides , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Androgens , Receptors, Somatostatin/genetics , Somatostatin/metabolism , Neuropeptides/metabolism , Cell Line, Tumor , Cell Proliferation
16.
Obesity (Silver Spring) ; 30(12): 2351-2362, 2022 12.
Article in English | MEDLINE | ID: mdl-36415999

ABSTRACT

Inflammasomes are multiprotein intracellular complexes composed of innate immune system receptors and sensors; they activate the inflammatory cascade in response to infectious microbes and/or molecules derived from host proteins. Because of cytokine secretion, inflammasomes can induce amplified systemic responses, its dysregulation can exacerbate symptoms in infectious diseases, and it has been related to the development of autoimmune diseases, inflammatory disorders, and even cancer. Obesity is associated with a chronic low-grade inflammation, in which circulating proinflammatory cytokines are elevated. Some publications describe changes in inflammation markers as a consequence of obesity, but others suggest that chronic inflammation might cause obesity (e.g., C-reactive protein): these assumptions reflect the difficulty of identifying the appropriate role of inflammation as cause or consequence of obesity and its related complications. Obesity is recognized as a clinical risk factor for developing cardiovascular diseases including atherosclerosis, metabolic syndrome, insulin resistance, and diabetes mellitus. Changes in the expression of inflammasomes are described in some of these obesity-related complications, and moreover, its modulation might exert a beneficial effect in some cases. Despite some contradictory results, most publications suggest a promising clinical effect based on in vitro and in vivo experiments. In this review, we summarized recent publications about inflammasome dysregulation in humans and its relationship with obesity-related comorbidities.


Subject(s)
Diabetes Mellitus , Inflammasomes , Humans , Inflammasomes/metabolism , Obesity/metabolism , Inflammation/metabolism , Cytokines
17.
Clin Transl Med ; 12(11): e1102, 2022 11.
Article in English | MEDLINE | ID: mdl-36419260

ABSTRACT

INTRODUCTION: Altered splicing landscape is an emerging cancer hallmark; however, the dysregulation and implication of the cellular machinery controlling this process (spliceosome components and splicing factors) in hepatocellular carcinoma (HCC) is poorly known. This study aimed to comprehensively characterize the spliceosomal profile and explore its role in HCC. METHODS: Expression levels of 70 selected spliceosome components and splicing factors and clinical implications were evaluated in two retrospective and six in silico HCC cohorts. Functional, molecular and mechanistic studies were implemented in three cell lines (HepG2, Hep3B and SNU-387) and preclinical Hep3B-induced xenograft tumours. RESULTS: Spliceosomal dysregulations were consistently found in retrospective and in silico cohorts. EIF4A3, RBM3, ESRP2 and SRPK1 were the most dysregulated spliceosome elements in HCC. EIF4A3 expression was associated with decreased survival and greater recurrence. Plasma EIF4A3 levels were significantly elevated in HCC patients. In vitro EIF4A3-silencing (or pharmacological inhibition) resulted in reduced aggressiveness, and hindered xenograft-tumours growth in vivo, whereas EIF4A3 overexpression increased tumour aggressiveness. EIF4A3-silencing altered the expression and splicing of key HCC-related genes, specially FGFR4. EIF4A3-silencing blocked the cellular response to the natural ligand of FGFR4, FGF19. Functional consequences of EIF4A3-silencing were mediated by FGFR4 splicing as the restoration of non-spliced FGFR4 full-length version blunted these effects, and FGFR4 inhibition did not exert further effects in EIF4A3-silenced cells. CONCLUSIONS: Splicing machinery is strongly dysregulated in HCC, providing a source of new diagnostic, prognostic and therapeutic options in HCC. EIF4A3 is consistently elevated in HCC patients and associated with tumour aggressiveness and mortality, through the modulation of FGFR4 splicing.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Spliceosomes/genetics , Carcinoma, Hepatocellular/genetics , Retrospective Studies , Liver Neoplasms/genetics , Oncogenes , RNA Splicing Factors/genetics , Heart Murmurs , Protein Serine-Threonine Kinases , RNA-Binding Proteins , Eukaryotic Initiation Factor-4A/genetics , DEAD-box RNA Helicases
18.
Nutrients ; 14(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36364908

ABSTRACT

ONCOFIT is a randomized clinical trial with a two-arm parallel design aimed at determining the influence of a multidisciplinary Prehabilitation and Postoperative Program (PPP) on post-surgery complications in patients undergoing resection of colon cancer. This intervention will include supervised physical exercise, dietary behavior change, and psychological support comparing its influence to the standard care. Primary and secondary endpoints will be assessed at baseline, at preoperative conditions, at the end of the PPP intervention (after 12 weeks) and 1-year post-surgery, and will include: post-surgery complications (primary endpoint); prolonged hospital length of stay; readmissions and emergency department call within 1-year after surgery; functional capacity; patient reported outcome measures targeted; anthropometry and body composition; clinical/tumor parameters; physical activity levels and sedentariness; dietary habits; other unhealthy habits; sleep quality; and fecal microbiota diversity and composition. Considering the feasibility of the present intervention in a real-life scenario, ONCOFIT will contribute to the standardization of a cost-effective strategy for preventing and improving health-related consequences in patients undergoing resection of colon cancer with an important clinical and economic impact, not only in the scientific community, but also in clinical practice.


Subject(s)
Colonic Neoplasms , Preoperative Exercise , Humans , Preoperative Care/methods , Colonic Neoplasms/surgery , Colonic Neoplasms/complications , Postoperative Care , Postoperative Complications/prevention & control , Postoperative Complications/etiology , Randomized Controlled Trials as Topic
19.
Endocr Relat Cancer ; 29(9): R123-R142, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35728261

ABSTRACT

The dysregulation of the splicing process has emerged as a novel hallmark of metabolic and tumor pathologies. In breast cancer (BCa), which represents the most diagnosed cancer type among women worldwide, the generation and/or dysregulation of several oncogenic splicing variants have been described. This is the case of the splicing variants of HER2, ER, BRCA1, or the recently identified by our group, In1-ghrelin and SST5TMD4, which exhibit oncogenic roles, increasing the malignancy, poor prognosis, and resistance to treatment of BCa. This altered expression of oncogenic splicing variants has been closely linked with the dysregulation of the elements belonging to the macromolecular machinery that controls the splicing process (spliceosome components and the associated splicing factors). In this review, we compile the current knowledge demonstrating the altered expression of splicing variants and spliceosomal components in BCa, showing the existence of a growing body of evidence supporting the close implication of the alteration in the splicing process in mammary tumorigenesis.


Subject(s)
Breast Neoplasms , Spliceosomes , Breast Neoplasms/pathology , Carcinogenesis/metabolism , Cell Transformation, Neoplastic/metabolism , Female , Humans , RNA Splicing , Spliceosomes/genetics , Spliceosomes/metabolism , Spliceosomes/pathology
20.
J Clin Endocrinol Metab ; 107(7): e2938-e2951, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35312002

ABSTRACT

CONTEXT: Adrenocorticotropin (ACTH)-secreting pituitary tumors (ACTHomas) are associated with severe comorbidities and increased mortality. Current treatments mainly focus on remission and prevention of persistent disease and recurrence. However, there are still no useful biomarkers to accurately predict the clinical outcome after surgery, long-term remission, or disease relapse. OBJECTIVES: This work aimed to identify clinical, biochemical, and molecular markers for predicting long-term clinical outcome and remission in ACTHomas. METHODS: A retrospective multicenter study was performed with 60 ACTHomas patients diagnosed between 2004 and 2018 with at least 2 years' follow-up. Clinical/biochemical variables were evaluated yearly. Molecular expression profile of the somatostatin/ghrelin/dopamine regulatory systems components and of key pituitary factors and proliferation markers were evaluated in tumor samples after the first surgery. RESULTS: Clinical variables including tumor size, time until diagnosis/first surgery, serum prolactin, and postsurgery cortisol levels were associated with tumor remission and relapsed disease. The molecular markers analyzed were distinctly expressed in ACTHomas, with some components (ie, SSTR1, CRHR1, and MKI67) showing instructive associations with recurrence and/or remission. Notably, an integrative model including selected clinical variables (tumor size/postsurgery serum cortisol), and molecular markers (SSTR1/CRHR1) can accurately predict the clinical evolution and remission of patients with ACTHomas, generating a receiver operating characteristic curve with an area under the curve of 1 (P < .001). CONCLUSION: This study demonstrates that the combination of a set of clinical and molecular biomarkers in ACTHomas is able to accurately predict the clinical evolution and remission of patients. Consequently, the postsurgery molecular profile represents a valuable tool for clinical evaluation and follow-up of patients with ACTHomas.


Subject(s)
Pituitary ACTH Hypersecretion , Pituitary Diseases , Pituitary Neoplasms , Humans , Hydrocortisone , Pituitary ACTH Hypersecretion/diagnosis , Pituitary ACTH Hypersecretion/genetics , Pituitary ACTH Hypersecretion/surgery , Pituitary Gland/pathology , Pituitary Neoplasms/diagnosis , Pituitary Neoplasms/genetics , Pituitary Neoplasms/surgery , Recurrence , Remission Induction , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...