Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Chembiochem ; 25(11): e202400045, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38593270

ABSTRACT

SUMO (Small Ubiquitin-like Modifiers) proteins are involved in a crucial post-translational modification commonly termed as SUMOylation. In this work, we have investigated the native-state conformational flexibility of human SUMO2 and its interaction with Cu2+ and Zn2+ ions using 15N-1H based 2D NMR spectroscopy. After SUMO1, SUMO2 is the most studied SUMO isoform in humans which shares 45 % and ~80 % similarity with SUMO1 in terms of sequence and structure, respectively. In this manuscript, we demonstrate that compared to SUMO1, several amino acids around the α1-helix region of SUMO2 access energetically similar near-native conformations. These conformations could play a crucial role in SUMO2's non-covalent interactions with SUMO interaction motifs (SIMs) on other proteins. The C-terminal of SUMO2 was found to bind strongly with Cu2+ ions resulting in a trimeric structure as observed by gel electrophoresis. This interaction seems to interfere in its non-covalent interaction with a V/I-x-V/I-V/I based SIM in Daxx protein.


Subject(s)
Copper , Small Ubiquitin-Related Modifier Proteins , Zinc , Humans , Copper/chemistry , Copper/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/chemistry , Zinc/chemistry , Zinc/metabolism , Protein Conformation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding
2.
Andrology ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38018348

ABSTRACT

Infertility affects a significant proportion of the reproductive-aged population, with male-associated factors contributing to over half of the cases. However, current diagnostic tools have limitations, leading to an underestimation of the true prevalence of male infertility. While traditional semen parameters provide some insights, they fail to determine the true fertility potential in a substantial number of instances. Therefore, it is crucial to investigate additional molecular targets responsible for male infertility to improve understanding and identification of such cases. Seminal plasma, the main carrier of molecules derived from male reproductive glands, plays a crucial role in reproduction. Amongst its multifarious functions, it regulates processes such as sperm capacitation, sperm protection and maturation, and even interaction with the egg's zona pellucida. Seminal plasma offers a non-invasive sample for urogenital diagnostics and has shown promise in identifying biomarkers associated with male reproductive disorders. This review aims to provide an updated and comprehensive overview of seminal plasma in the diagnosis of male infertility, exploring its composition, function, methods used for analysis, and the application of emerging markers. Apart from the application, the potential challenges of seminal plasma analysis such as standardisation, marker interpretation and confounding factors have also been addressed. Moreover, we have also explored future avenues for enhancing its utility and its role in improving diagnostic strategies. Through comprehensive exploration of seminal plasma's diagnostic potential, the present analysis seeks to advance the understanding of male infertility and its effective management.

3.
Front Cell Dev Biol ; 11: 1151672, 2023.
Article in English | MEDLINE | ID: mdl-37363721

ABSTRACT

Ovastacin (ASTL), a zinc metalloprotease, is released from a fertilized egg during exocytosis of cortical granules which occurs minutes after the sperm and egg fuse. ASTL cleaves ZP2, one of the four primary glycoproteins of human zona pellucida, and this cleavage prevents polyspermy, causes zona pellucida hardening, and also protects the pre-implantation embryo. Any perturbation in the activity of ASTL can thus disturb this process and may lead to infertility without changing the gross morphology of the oocyte. A small amount of ASTL is also released by unfertilized oocytes but its catalytic activity is absent as it is bound by its inhibitor, Fetuin-B (FETUB). Pre-mature release of ASTL when FETUB is absent also causes infertility. To identify and understand the structural and functional effects of deleterious SNPs of ASTL on its interaction with ZP2 and FETUB and hence on fertility, a total of 4,748 SNPs from the dbSNP database were evaluated using a variety of in silico tools. All of the 40 shortlisted nsSNPs were present in the catalytic domain of the protein. Comparison of the wild type with mutants using MutPred2 suggests an alteration in the catalytic activity/zinc binding site in many SNPs. Docking studies show the involvement of hydrophobic interactions and H bonding between ASTL and ZP2 and also between ASTL and FETUB. Four positions in ASTL involved in the hydrophobic interactions (P105 and D200 between ASTL and ZP2; D198 and L278 between ASTL and FETUB) and 5 in H bonding (E75 and R159 between ASTL and ZP2; and K93, R159, and C281 between ASTL and FETUB) have SNP's associated with them validating their importance. Interestingly, a cluster of multiple SNPs was found in the motif 198DRD200, which is also a well-conserved region among several species. Statistical Coupling Analysis (SCA) suggested that the deleterious SNPs were present in the functionally important amino acid positions of ASTL and are evolutionarily coupled. Thus, these results attempt to identify the regions in ASTL, mutations in which can affect its binding with ZP2 or FETUB and cause female infertility.

4.
Viruses ; 15(3)2023 02 28.
Article in English | MEDLINE | ID: mdl-36992366

ABSTRACT

The emergence of COVID-19 has led to significant morbidity and mortality, with around seven million deaths worldwide as of February 2023. There are several risk factors such as age and sex that are associated with the development of severe symptoms due to COVID-19. There have been limited studies that have explored the role of sex differences in SARS-CoV-2 infection. As a result, there is an urgent need to identify molecular features associated with sex and COVID-19 pathogenesis to develop more effective interventions to combat the ongoing pandemic. To address this gap, we explored sex-specific molecular factors in both mouse and human datasets. The host immune targets such as TLR7, IRF7, IRF5, and IL6, which are involved in the immune response against viral infections, and the sex-specific targets such as AR and ESSR were taken to investigate any possible link with the SARS-CoV-2 host receptors ACE2 and TMPRSS2. For the mouse analysis, a single-cell RNA sequencing dataset was used, while bulk RNA-Seq datasets were used to analyze the human clinical data. Additional databases such as the Database of Transcription Start Sites (DBTS), STRING-DB, and the Swiss Regulon Portal were used for further analysis. We identified a 6-gene signature that showed differential expression in males and females. Additionally, this gene signature showed potential prognostic utility by differentiating ICU patients from non-ICU patients due to COVID-19. Our study highlights the importance of assessing sex differences in SARS-CoV-2 infection, which can assist in the optimal treatment and better vaccination strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Female , Male , Animals , Mice , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , COVID-19/genetics , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Immunologic Factors , Interferon Regulatory Factors/metabolism
5.
Langmuir ; 38(45): 13803-13813, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36321388

ABSTRACT

Ionic liquids based on doubly charged cations, often termed dicationic ionic liquids (DILs), offer robust physicochemical properties and low toxicity than conventional monocationic ionic liquids. In this design-based study, we used solid-state NMR spectroscopy to provide the interaction mechanism of two DILs, 1,n-bis(3-alkylimidazolium-1-yl) alkane dibromide ([C2n(C7-nIM)2]2+·2Br-, n = 1, 6), with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) phospholipid membranes, to explain the low toxicity of DILs toward HeLa, Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae cell lines. Dications with a short linker and long terminal chains cause substantial perturbation to the bilayer structure, making them more membrane permeabilizing, as shown by fluorescence-based dye leakage assays. The structural perturbation is even higher than [C12(MIM)]+ monocations, which carry a single 12-carbon long chain and exhibit a much higher membrane affinity, permeability, and cytotoxicity. These structural details are a crucial contribution to the design strategies aimed at harnessing the biological activity of ionic liquids.


Subject(s)
Ionic Liquids , Phospholipids , Lipid Bilayers/chemistry , Ionic Liquids/toxicity , Ionic Liquids/chemistry , Alkanes/toxicity , Escherichia coli/metabolism
6.
Cancer Med ; 11(6): 1573-1586, 2022 03.
Article in English | MEDLINE | ID: mdl-35137551

ABSTRACT

Understanding the complex tumor microenvironment is key to the development of personalized therapies for the treatment of cancer including colorectal cancer (CRC). In the past decade, significant advances in the field of immunotherapy have changed the paradigm of cancer treatment. Despite significant improvements, tumor heterogeneity and lack of appropriate classification tools for CRC have prevented accurate risk stratification and identification of a wider patient population that may potentially benefit from targeted therapies. To identify novel signatures for accurate prognostication of CRC, we quantified gene expression of 12 immune-related genes using a medium-throughput NanoString quantification platform in 93 CRC patients. Multivariate prognostic analysis identified a combined four-gene prognostic signature (TGFB1, PTK2, RORC, and SOCS1) (HR: 1.76, 95% CI: 1.05-2.95, *p < 0.02). The survival trend was captured in an independent gene expression data set: GSE17536 (177 patients; HR: 3.31, 95% CI: 1.99-5.55, *p < 0.01) and GSE14333 (226 patients; HR: 2.47, 95% CI: 1.35-4.53, *p < 0.01). Further, gene set enrichment analysis of the TCGA data set associated higher prognostic scores with epithelial-mesenchymal transition (EMT) and inflammatory pathways. Comparatively, a lower prognostic score was correlated with oxidative phosphorylation and MYC and E2F targets. Analysis of immune parameters identified infiltration of T-reg cells, CD8+ T cells, M2 macrophages, and B cells in high-risk patient groups along with upregulation of immune exhaustion genes. This molecular study has identified a novel prognostic gene signature with clinical utility in CRC. Therefore, along with prognostic features, characterization of immune cell infiltrates and immunosuppression provides actionable information that should be considered while employing personalized medicine.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , CD8-Positive T-Lymphocytes/pathology , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Humans , Prognosis , Tumor Microenvironment/genetics
7.
Front Cell Dev Biol ; 9: 763166, 2021.
Article in English | MEDLINE | ID: mdl-34869353

ABSTRACT

ZP2, an important component of the zona matrix, surrounds mammalian oocytes and facilitates fertilization. Recently, some studies have documented the association of mutations in genes encoding the zona matrix with the infertile status of human females. Single nucleotide polymorphisms are the most common type of genetic variations observed in a population and as per the dbSNP database, around 5,152 SNPs are reported to exist in the human ZP2 (hZP2) gene. Although a wide range of computational tools are publicly available, yet no computational studies have been done to date to identify and analyze structural and functional effects of deleterious SNPs on hZP2. In this study, we conducted a comprehensive in silico analysis of all the SNPs found in hZP2. Six different computational tools including SIFT and PolyPhen-2 predicted 18 common nsSNPs as deleterious of which 12 were predicted to most likely affect the structure/functional properties. These were either present in the N-term region crucial for sperm-zona interaction or in the zona domain. 31 additional SNPs in both coding and non-coding regions were also identified. Interestingly, some of these SNPs have been found to be present in infertile females in some recent studies.

8.
Curr Issues Mol Biol ; 43(3): 1307-1324, 2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34698062

ABSTRACT

(1) Background: The relationships between the biochemical and immunological components in seminal plasma and their physiological effects on male reproductive system have been underreported. In this study, we evaluated the potential of several seminal plasma biochemical and immunological markers in the pathophysiological developments of the infertile male patients. The study was designed to identify and assess different markers that may be associated with semen functions in different types of male infertility. (2) Methods: A total of 50 infertile male patients who underwent checkup for fertility assessment and 50 fertile controls were included in this study. The complete medical history of each recruited participant was reviewed. The infertile sub-groups (non-obstructive azoospermia (NOA), asthenozoospermia (AS), normozoospermic infertile (NI), and oligozoospermia (OZ)) were characterized based on sperm motility and concentration, while NI patients were included after a thorough check up of their female partners as well. We investigated each sample for 21 different analytes, enzymes, trace elements, and immunological markers to find crucial markers posing as contributing factors to a specific type of male infertility. (3) Results: The levels of 15 out of 21 markers, assayed from the seminal plasma of infertile males, were significantly altered in comparison to fertile controls (p < 0.05). For the first time, microprotein levels were also analyzed. The presence of monocytes, lymphocytes, and granulocytes was limited to semen from NOA patients, while a significant increase in the level of platelets was observed in AS. Hierarchical clustering and ROC-AUC analysis identified the three most significant markers (zinc, LDH, and TG) for the healthy control group and asthenozoospermic group (AUC, of 0.92 and 0.81, respectively). (4) Conclusions: The altered levels of biochemical and immunological markers in seminal plasma might be associated with the different male infertility profiles and could be required for the sperm metabolism and maintenance. However, a larger sample size and follow up analysis is required for establishing the hypothesized panel of markers as biomarkers at clinical stage.


Subject(s)
Infertility, Male/metabolism , Semen Analysis , Semen/metabolism , Adult , Biomarkers , Case-Control Studies , Computational Biology/methods , Hormones/metabolism , Humans , Infertility, Male/diagnosis , Infertility, Male/etiology , Male , Metabolic Networks and Pathways , Metabolome , Metabolomics/methods , ROC Curve , Semen/chemistry , Sperm Count , Sperm Motility , Young Adult
9.
J Phys Chem B ; 125(14): 3613-3621, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33818103

ABSTRACT

We have evaluated ionic liquids based on double-chained 1-alkyl-3-octylimidazolium cations ([CnC8IM]+, n = 2, 4, 6, 8, 10, 12) for their cytotoxicity toward various cell lines. The toxicity of ionic liquids was correlated to their ability to partition into and permeabilize phosphocholine (POPC)- or phosphoglycerol (POPG)-based large unilamellar vesicles. Membrane partitioning of ionic liquids was assessed using the ζ-potential measurements, and membrane permeability was determined using fluorescence-based dye leakage assays. Both cytotoxicity and membrane permeability of these ILs were found to increase in a sigmoidal fashion with increasing chain length on the N1 atom (n in [CnC8IM]+) cations. These results were compared with those for ionic liquids based on single-chained 1-alkyl-3-methylimidazolium cations ([Cn+8C1IM]+), carrying a similar number of carbon atoms but as a single alkyl chain. Our studies show that ionic liquids containing double-chained cations are relatively less cytotoxic and membrane-permeabilizing than the cations bearing a single long alkyl chain.


Subject(s)
Ionic Liquids , Cations , Cell Membrane Permeability , Ionic Liquids/toxicity , Permeability , Unilamellar Liposomes
10.
Biochim Biophys Acta Rev Cancer ; 1875(2): 188513, 2021 04.
Article in English | MEDLINE | ID: mdl-33493614

ABSTRACT

Colorectal cancer (CRC) is one of the most prevalent cancers, with more than one million new cases every year. In the last few decades, several advancements in therapeutic and preventative levels have reduced the mortality rate, but new biomarkers are required for improved prognosis. The alterations at the genetic and epigenetic level have been recognized as major players in tumorigenesis. The products of gene expression in the form of mRNA, microRNA, and long-noncoding RNA, have started to emerge as important regulatory molecules, playing an important role in cancer. Gene-expression based prognostic risk scores, which quantify and compare their expression, have emerged as promising biomarkers with enormous clinical value. These composite multi-gene models in which more than one gene is used to predict prognosis have been shown to be significantly effective in identifying patients with multiple clinico-pathological risks like overall mortality, response to chemotherapy, risk of metastasis, etc. The advent of microarray and advanced sequencing technologies have led to the generation of large datasets like TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus), which have fueled the search for new biomarkers. Continuous evaluation of these candidate biomarkers in clinical settings is promising to improve the management of CRC. These composite gene signatures provide potential in identifying high-risk patients, which might help clinicians to better manage these patients and design appropriate personalized therapeutic interventions. In this review, we emphasize on composite prognostic scores from diverse resources with clinical utility in CRC.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Gene Expression Profiling/methods , Databases, Genetic , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , MicroRNAs/genetics , Prognosis , RNA, Long Noncoding/genetics , Survival Analysis
11.
J Colloid Interface Sci ; 581(Pt B): 954-963, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32961348

ABSTRACT

The effect of cationic head-group of ionic liquid on the structure and dynamics of phospholipid bilayer was studied to provide insights into the mechanism of ionic liquid-membrane interaction. The effect was observed using six ionic liquids containing benzimidazolium, imidazolium, pyrrolidinium, piperidinium, ammonium, and morpholinium based amphiphilic cations carrying a dodecyl alkyl chain. Unilamellar and multilamellar vesicles composed of zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were used. Permeability of POPC bilayer was found to have a strong dependence on ionic liquid head-group structure. To probe the structural details of interaction, 31P and 2H based solid-state NMR measurements were performed. The cations differed in terms of their effect on the orientation and disorder in the phosphocholine moiety in lipid head-group as revealed by chemical shift anisotropy of 31P. Cations carrying an unshielded charge like benzimidazolium, imidazolium, and ammonium result in strong reorientation of phosphocholine moiety in lipid head-group. Large sized cations like benzimidazolium and piperidinium result in enhanced lipid chain dynamics as revealed by order parameter calculations of deuterated lipid chains. Relatively polar head-group of morpholinium cation neither impacts the phospholipid head-group nor chain packing. Our results suggest that there exists a direct correlation between ionic liquid head-group induced structural changes in bilayer and their ability to permeabilize/disrupt the membrane and be cytotoxic.

12.
Biol Reprod ; 103(6): 1171-1185, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32761117

ABSTRACT

Mammalian fertilization involves a physical interaction between a sperm and an egg followed by molecular interactions amongst their various cell surface molecules. These interactions are initially mediated on the egg's outermost matrix, zona pellucida (ZP), and then its plasma membrane. To better understand this process, it is pertinent to find the corresponding molecules on sperm that interact with ZP or the egg's plasma membrane. Although currently, we have some knowledge about the binding partners for egg's plasma membrane on sperm, yet the ones involved in an interaction with ZP have remained remarkably elusive. This review provides comprehensive knowledge about the various sperm proteins participating in mammalian fertilization and discusses the possible reasons for not being able to identify the strong sperm surface candidate (s) for ZP adhesion. It also hypothesizes the existence of a multi-protein complex(s), members of which participate in oviduct transport, cumulus penetration, zona adhesion, and adhesion/fusion with the egg's plasma membrane; with some protein(s) having multiple roles during this process. Identification of these proteins is crucial as it improves our understanding of the process and allows us to successfully treat infertility, develop contraceptives, and improve artificial reproductive technologies.


Subject(s)
Fertilization/physiology , Mammals/physiology , Spermatozoa/metabolism , Animals , Male , Sperm-Ovum Interactions/physiology
13.
Int J Biol Macromol ; 151: 204-211, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32061854

ABSTRACT

Metal ions like Cu2+ and Zn2+ have been shown to impact protein misfolding pathways in neurodegenerative proteinopathies like Alzheimer's and Parkinson's. Also, due to their strong interaction with Ubiquitin, they interfere in degradation of misfolded proteins by impairing the ubiquitin-proteasome system (UPS). In this work, we have studied the interaction of these metal ions with a small Ubiquitin like post-translation modifier SUMO1, which is known to work co-operatively with Ubiquitin to regulate UPS system. Between Cu2+ and Zn2+, the former binds more strongly with SUMO1 as determined using fluorescence spectroscopy. SUMO1 aggregates, forming trimer and higher oligomers in presence of Cu2+ ions which were characterized using gel electrophoresis, Bradford assay, and transmission electron microscopy. Chemical shift analysis using 15N/1H based NMR spectroscopy revealed that SUMO1 retains its structural fold in its trimeric state. Cu2+ induced paramagnetic quenching and Zn2+ induced chemical shift perturbation of 15N-1H cross-peaks were used to identify their respective binding sites in SUMO1. Binding sites so obtained were further validated with molecular dynamics studies. Our findings provide structural insights into the SUMO1-Cu2+/Zn2+ interaction, and its impact on aggregation of SUMO1 which might affect its ability to modify functions of target proteins.


Subject(s)
Binding Sites , Copper/chemistry , Ions , SUMO-1 Protein/chemistry , Zinc/chemistry , Amino Acid Sequence , Molecular Dynamics Simulation , Protein Binding , Protein Stability , Protein Structure, Secondary , Recombinant Proteins , SUMO-1 Protein/metabolism , Spectrum Analysis , Structure-Activity Relationship
14.
Langmuir ; 35(37): 12215-12223, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31424219

ABSTRACT

We compare the biophysical and structural aspects of the interaction of amphiphilic ionic liquids containing 1-alkyl-3-methylimidazolium cation ([CnMIM]+, n = 8, 12, or 16) with membranes composed of zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol (POPG). Liposome affinity and permeabilization were determined using ζ-potential and fluorescence studies, correlated with the cytoxicity of [CnMIM]+Br- toward HeLa cell lines. Membrane affinity is strongest in the case of [C16MIM]+Br- followed by [C12MIM]+Br- and [C8MIM]+Br- for both membranes, and trends remained the same in the case of membrane permeability and cytotoxicity. Solid-state NMR spectroscopy was used to localize [CnMIM]+ inside the lipid bilayers and to study their impact on the head group and acyl chain structures and dynamics of the lipid molecules. The charged ring moiety of the [CnMIM]+ is localized in the lipid-water interface of the membranes irrespective of the chain length and membrane surface charge. While [C8MIM]+ binds the membrane most weakly, it induces the largest disorder in the lipid chain region. A lack of fast flip-flop motions of the amphiphiles in the case of long chain [C16MIM]+ is suggested to render the membrane unstable, which increases its permeability. Between the lipid molecules, the POPC membrane incurs larger disorder in lipid chain packing upon insertion of [CnMIM]+ molecules. The study provides structural details of the impact of increasing chain lengths in [CnMIM]+ on the structural properties of lipid bilayers.


Subject(s)
Cell Membrane/chemistry , Cell Membrane/metabolism , Hydrophobic and Hydrophilic Interactions , Ionic Liquids/chemistry , Ionic Liquids/pharmacology , Alkylation , Cell Membrane/drug effects , Cell Membrane Permeability/drug effects , HeLa Cells , Humans
15.
Int J Mol Sci ; 20(15)2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31387239

ABSTRACT

Colorectal cancer (CRC) is a high burden disease with several genes involved in tumor progression. The aim of the present study was to identify, generate and clinically validate a novel gene signature to improve prediction of overall survival (OS) to effectively manage colorectal cancer. We explored The Cancer Genome Atlas (TCGA), COAD and READ datasets (597 samples) from The Protein Atlas (TPA) database to extract a total of 595 candidate genes. In parallel, we identified 29 genes with perturbations in > 6 cancers which are also affected in CRC. These genes were entered in cBioportal to generate a 17 gene panel with highest perturbations. For clinical validation, this gene panel was tested on the FFPE tissues of colorectal cancer patients (88 patients) using Nanostring analysis. Using multivariate analysis, a high prognostic score (composite 4 gene signature-DPP7/2, YWHAB, MCM4 and FBXO46) was found to be a significant predictor of poor prognosis in CRC patients (HR: 3.42, 95% CI: 1.71-7.94, p < 0.001 *) along with stage (HR: 4.56, 95% CI: 1.35-19.15, p = 0.01 *). The Kaplan-Meier analysis also segregated patients on the basis of prognostic score (log-rank test, p = 0.001 *). The external validation using GEO dataset (GSE38832, 122 patients) corroborated the prognostic score (HR: 2.7, 95% CI: 1.99-3.73, p < 0.001 *). Additionally, higher score was able to differentiate stage II and III patients (130 patients) on the basis of OS (HR: 2.5, 95% CI: 1.78-3.63, p < 0.001 *). Overall, our results identify a novel 4 gene prognostic signature that has clinical utility in colorectal cancer.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Transcriptome , Aged , Aged, 80 and over , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/therapy , Combined Modality Therapy , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Grading , Neoplasm Metastasis , Neoplasm Staging , Prognosis , Proportional Hazards Models , ROC Curve
16.
Proteins ; 87(8): 658-667, 2019 08.
Article in English | MEDLINE | ID: mdl-30958586

ABSTRACT

Structural heterogeneity in the native-state ensemble of dSmt3, the only small ubiquitin-like modifier (SUMO) in Drosophila melanogaster, was investigated and compared with its human homologue SUMO1. Temperature dependence of amide proton's chemical shift was studied to identify amino acids possessing alternative structural conformations in the native state. Effect of small concentration of denaturant (1M urea) on this population was also monitored to assess the ruggedness of near-native energy landscape. Owing to presence of many such amino acids, especially in the ß2 -loop-α region, the native state of dSmt3 seems more flexible in comparison to SUMO1. Information about backbone dynamics in ns-ps timescale was quantified from the measurement of 15 N-relaxation experiments. Furthermore, the noncovalent interaction of dSmt3 and SUMO1 with Daxx12 (Daxx729 DPEEIIVLSDSD740 ), a [V/I]-X-[V/I]-[V/I]-based SUMO interaction motif, was characterized using Bio-layer Interferometery and NMR spectroscopy. Daxx12 fits itself in the groove formed by ß2 -loop-α structural region in both dSmt3 and SUMO1, but the binding is stronger with the former. Flexibility of ß2 -loop-α region in dSmt3 is suspected to assist its interaction with Daxx12. Our results highlight the role of native-state flexibility in assisting noncovalent interactions of SUMO proteins especially in organisms where a single SUMO isoform has to tackle multiple substrates single handedly.


Subject(s)
Drosophila Proteins/chemistry , Drosophila melanogaster/chemistry , Repressor Proteins/chemistry , SUMO-1 Protein/chemistry , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Conformation , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Repressor Proteins/metabolism , SUMO-1 Protein/metabolism , Small Ubiquitin-Related Modifier Proteins
17.
Int J Biol Macromol ; 123: 446-456, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30439429

ABSTRACT

The proteins secreted by bacteria contribute to immune mediated gastric inflammation and epithelial damage; thus aid bacterial invasion in host tissue, and may also interact with host proteins, conspirating a mechanism against host-immune system. The Histone-like DNA binding protein is one of the most abundant nucleoid-associated proteins in Helicobacter pylori (H. pylori). The protein -referred here as Hup- is also secreted in vitro by H. pylori, thus it may have its role in disease pathogenesis. This is possible only if Hup interact with some human proteins including Small-Ubiquitin-like-Modifier (SUMO) proteins. Studies have established that SUMO-proteins participate in various innate-immune pathways and thus promote an efficient immune response to combat pathogenic infections. Sequence analysis revealed the presence of two SUMO interacting motifs (SIMs) and several positively charged lysine residues on the protein surface of Hup. Additionally, SUMO-proteins epitomize negatively charged surface which confers them the ability to bind to DNA/RNA binding proteins. Based on the presence of SIMs as well as charge complementarity between the proteins, it is legitimate to consider that Hup protein would bind to SUMO-proteins. The present study has been undertaken to establish this interaction for the first time using NMR in combination with ITC and other biophysical techniques.


Subject(s)
Bacterial Proteins/chemistry , DNA-Binding Proteins/chemistry , Helicobacter pylori/chemistry , Nuclear Magnetic Resonance, Biomolecular , SUMO-1 Protein/chemistry , Amino Acid Motifs , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Helicobacter pylori/metabolism , Humans , Protein Binding , SUMO-1 Protein/metabolism
18.
Nat Chem Biol ; 14(2): 156-162, 2018 02.
Article in English | MEDLINE | ID: mdl-29251719

ABSTRACT

Vertebrate glycoproteins and glycolipids are synthesized in complex biosynthetic pathways localized predominantly within membrane compartments of the secretory pathway. The enzymes that catalyze these reactions are exquisitely specific, yet few have been extensively characterized because of challenges associated with their recombinant expression as functional products. We used a modular approach to create an expression vector library encoding all known human glycosyltransferases, glycoside hydrolases, and sulfotransferases, as well as other glycan-modifying enzymes. We then expressed the enzymes as secreted catalytic domain fusion proteins in mammalian and insect cell hosts, purified and characterized a subset of the enzymes, and determined the structure of one enzyme, the sialyltransferase ST6GalNAcII. Many enzymes were produced at high yields and at similar levels in both hosts, but individual protein expression levels varied widely. This expression vector library will be a transformative resource for recombinant enzyme production, broadly enabling structure-function studies and expanding applications of these enzymes in glycochemistry and glycobiology.


Subject(s)
Gene Expression Profiling , Sialyltransferases/chemistry , Animals , Baculoviridae/metabolism , Crystallography, X-Ray , Cytidine Monophosphate/chemistry , Genetic Vectors , Glycoside Hydrolases/chemistry , Glycosylation , HEK293 Cells , Humans , Insecta , Kinetics , Recombinant Proteins/chemistry , Sulfotransferases/chemistry
19.
J Biol Chem ; 288(27): 19900-14, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23689369

ABSTRACT

Mucin type O-glycosylation is initiated by a large family of polypeptide GalNAc transferases (ppGalNAc Ts) that add α-GalNAc to the Ser and Thr residues of peptides. Of the 20 human isoforms, all but one are composed of two globular domains linked by a short flexible linker: a catalytic domain and a ricin-like lectin carbohydrate binding domain. Presently, the roles of the catalytic and lectin domains in peptide and glycopeptide recognition and specificity remain unclear. To systematically study the role of the lectin domain in ppGalNAc T glycopeptide substrate utilization, we have developed a series of novel random glycopeptide substrates containing a single GalNAc-O-Thr residue placed near either the N or C terminus of the glycopeptide substrate. Our results reveal that the presence and N- or C-terminal placement of the GalNAc-O-Thr can be important determinants of overall catalytic activity and specificity that differ between transferase isoforms. For example, ppGalNAc T1, T2, and T14 prefer C-terminally placed GalNAc-O-Thr, whereas ppGalNAc T3 and T6 prefer N-terminally placed GalNAc-O-Thr. Several transferase isoforms, ppGalNAc T5, T13, and T16, display equally enhanced N- or C-terminal activities relative to the nonglycosylated control peptides. This N- and/or C-terminal selectivity is presumably due to weak glycopeptide binding to the lectin domain, whose orientation relative to the catalytic domain is dynamic and isoform-dependent. Such N- or C-terminal glycopeptide selectivity provides an additional level of control or fidelity for the O-glycosylation of biologically significant sites and suggests that O-glycosylation may in some instances be exquisitely controlled.


Subject(s)
Glycopeptides , Lectins , N-Acetylgalactosaminyltransferases , Catalysis , Glycopeptides/chemistry , Glycopeptides/genetics , Glycopeptides/metabolism , Glycosylation , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , N-Acetylgalactosaminyltransferases/chemistry , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism , Protein Structure, Tertiary , Substrate Specificity/physiology , Polypeptide N-acetylgalactosaminyltransferase
20.
Biochim Biophys Acta ; 1830(8): 4274-81, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23578692

ABSTRACT

BACKGROUND: Modifications of proteins by O-glycosylation determine many of the properties and functions of proteins. We wish to understand the mechanisms of O-glycosylation and develop inhibitors that could affect glycoprotein functions and alter cellular behavior. METHODS: We expressed recombinant soluble human Gal- and GlcNAc-transferases that synthesize the O-glycan cores 1 to 4 and are critical for the overall structures of O-glycans. We determined the properties and substrate specificities of these enzymes using synthetic acceptor substrate analogs. Compounds that were inactive as substrates were tested as inhibitors. RESULTS: Enzymes significantly differed in their recognition of the sugar moieties and aglycone groups of substrates. Core 1 synthase was active with glycopeptide substrates but GlcNAc-transferases preferred substrates with hydrophobic aglycone groups. Chemical modifications of the acceptors shed light on enzyme-substrate interactions. Core 1 synthase was weakly inhibited by its substrate analog benzyl 2-butanamido-2-deoxy-α-d-galactoside while two of the three GlcNAc-transferases were selectively and potently inhibited by bis-imidazolium salts which are not substrate analogs. CONCLUSIONS: This work delineates the distinct specificities and properties of the enzymes that synthesize the common O-glycan core structures 1 to 4. New inhibitors were found that could selectively inhibit the synthesis of cores 1, 2 and 3 but not core 4. GENERAL SIGNIFICANCE: These studies help our understanding of the mechanisms of action of enzymes critical for O-glycosylation. The results may be useful for the re-engineering of O-glycosylation to determine the roles of O-glycans and the enzymes critical for O-glycosylation, and for biotechnology with potential therapeutic applications.


Subject(s)
Galactosyltransferases/metabolism , N-Acetylglucosaminyltransferases/metabolism , Polysaccharides/biosynthesis , Galactosyltransferases/antagonists & inhibitors , Galactosyltransferases/chemistry , Glycosylation , Humans , N-Acetylglucosaminyltransferases/antagonists & inhibitors , N-Acetylglucosaminyltransferases/chemistry , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...