Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Lett ; 14(12): 20180730, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30958253

ABSTRACT

During mate choice decisions, females of many vertebrates use male olfactory cues to achieve immunogenetic optimality of their offspring. Three-spined sticklebacks ( Gasterosteus aculeatus) populating habitats that differ in their parasite communities evolve locally adapted combinations of genetic variants encoded at the major histocompatibility complex (MHC). Such adaptation confers optimal resistance to the local parasite fauna. Immunogenetic signatures co-evolved with local parasites favour population-specific assortative mate choice behaviour. Previous studies have shown that female sticklebacks evaluate male MHC-associated olfactory cues during the process of mate choice, but how habitat-specific information is exchanged between males and females has remained elusive. Here, we directly demonstrate the molecular nature of the olfactory cue providing habitat-specific information. Under controlled laboratory conditions, females that are ready to mate prefer mixtures of synthetic MHC peptide ligands mimicking the optimal allele number of their original population. These results imply that female sticklebacks can determine the number of MHC alleles of their prospective mates, compare it to their own immunogenetic status, and, if optimal with respect to the immunogenetic complementarity, accept the male as mate. Our results suggest a potentially common mechanism of ecological speciation in vertebrates that is based on the olfactory assessment of habitat-specific immunogenetic diversity.


Subject(s)
Major Histocompatibility Complex , Mating Preference, Animal/drug effects , Odorants , Smegmamorpha/physiology , Animals , Choice Behavior/physiology , Ecotype , Female , Male , Smegmamorpha/immunology
2.
Sci Rep ; 6: 19441, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26777264

ABSTRACT

Food and sex often go hand in hand because of the nutritional cost of reproduction. For Drosophila melanogaster females, this relationship is especially intimate because their offspring develop on food. Since yeast and sugars are important nutritional pillars for Drosophila, availability of these foods should inform female reproductive behaviours. Yet mechanisms coupling food and sex are poorly understood. Here we show that yeast increases female sexual receptivity through interaction between its protein content and its odorous fermentation product acetic acid, sensed by the Ionotropic odorant receptor neuron Ir75a. A similar interaction between nutritional and hedonic value applies to sugars where taste and caloric value only increase sexual receptivity when combined. Integration of nutritional and sensory values would ensure that there are sufficient internal nutrients for egg production as well as sufficient environmental nutrients for offspring survival. These findings provide mechanisms through which females may maximize reproductive output in changing environments.


Subject(s)
Animal Feed , Drosophila melanogaster/physiology , Sexual Behavior, Animal , Acetic Acid , Amino Acids , Animals , Drosophila Proteins , Female , Olfactory Bulb/physiology , Reproduction , Yeasts
SELECTION OF CITATIONS
SEARCH DETAIL
...