Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Proc Natl Acad Sci U S A ; 121(18): e2312323121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38621117

ABSTRACT

Zebra finches, a species of songbirds, learn to sing by creating an auditory template through the memorization of model songs (sensory learning phase) and subsequently translating these perceptual memories into motor skills (sensorimotor learning phase). It has been traditionally believed that babbling in juvenile birds initiates the sensorimotor phase while the sensory phase of song learning precedes the onset of babbling. However, our findings challenge this notion by demonstrating that testosterone-induced premature babbling actually triggers the onset of the sensory learning phase instead. We reveal that juvenile birds must engage in babbling and self-listening to acquire the tutor song as the template. Notably, the sensory learning of the template in songbirds requires motor vocal activity, reflecting the observation that prelinguistic babbling in humans plays a crucial role in auditory learning for language acquisition.


Subject(s)
Finches , Animals , Humans , Vocalization, Animal , Learning , Language Development
2.
Animals (Basel) ; 14(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38539971

ABSTRACT

Measurement of blood corticosterone concentrations has been established as an indicator for assessment of acute distress. Therefore, knowledge on physiological fluctuations is required, but previous studies allow little conclusion on daily fluctuations in domestic chickens (Gallus gallus domesticus). To verify the presence of a circadian corticosterone rhythm in socialized chickens, blood samples were taken at four-hour intervals from 12 laying hens kept in groups of four over three days, each. Prior to experiments, hens were adapted to repeated handling for stress reduction. Corticosterone concentration was determined using radioimmunoassay. Blood sampling time and duration were recorded, and audio and video recordings were analyzed to assess the impact of behavior on corticosterone concentrations. Despite individual fluctuations, most hens showed a circadian course with two peaks per day. Statistics revealed a significant peak during the day (between 12:00 p.m. and 04:00 p.m.) and a tendency for a second peak at night (12:00 a.m.). The daily corticosterone peak was not explained by daytime social stress and needs to be seen as an endophenotype. The role of nightly corticosterone production has to be investigated in further studies. There might be a relation between corticosterone and reproduction since the only hen not showing peaks was not laying eggs.

3.
Proc Natl Acad Sci U S A ; 120(43): e2307340120, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37844245

ABSTRACT

Echolocation, the detection of objects by means of sound waves, has evolved independently in diverse animals. Echolocators include not only mammals such as toothed whales and yangochiropteran and rhinolophoid bats but also Rousettus fruit bats, as well as two bird lineages, oilbirds and swiftlets. In whales and yangochiropteran and rhinolophoid bats, positive selection and molecular convergence has been documented in key hearing-related genes, such as prestin (SLC26A5), but few studies have examined these loci in other echolocators. Here, we examine patterns of selection and convergence in echolocation-related genes in echolocating birds and Rousettus bats. Fewer of these loci were under selection in Rousettus or birds compared with classically recognized echolocators, and elevated convergence (compared to outgroups) was not evident across this gene set. In certain genes, however, we detected convergent substitutions with potential functional relevance, including convergence between Rousettus and classic echolocators in prestin at a site known to affect hair cell electromotility. We also detected convergence between Yangochiroptera, Rhinolophidea, and oilbirds in TMC1, an important mechanosensory transduction channel in vertebrate hair cells, and observed an amino acid change at the same site within the pore domain. Our results suggest that although most proteins implicated in echolocation in specialized mammals may not have been recruited in birds or Rousettus fruit bats, certain hearing-related loci may have undergone convergent functional changes. Investigating adaptations in diverse echolocators will deepen our understanding of this unusual sensory modality.


Subject(s)
Chiroptera , Echolocation , Animals , Chiroptera/physiology , Phylogeny , Evolution, Molecular , Mammals/genetics , Hearing/genetics , Whales/physiology , Birds/genetics , Echolocation/physiology
4.
Gen Comp Endocrinol ; 341: 114334, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37302764

ABSTRACT

Kisspeptin, a product of the Kiss1 gene is considered a potent stimulator of gonadotropin release, by interacting with its receptor, the G protein-coupled receptor 54. Kiss1 neurons are known to mediate the positive and negative feedback effects of oestradiol on GnRH neurons that control the pulsatile and surge secretion of GnRH. While in spontaneously ovulating mammals the GnRH/LH surge is initiated by a rise in ovarian oestradiol secreted from maturing follicles, in induced ovulators, the primary trigger is the mating stimulus. Damaraland mole rats (Fukomys damarensis) are cooperatively breeding, subterranean rodents that exhibit induced ovulation. We have previously described in this species the distribution and differential expression pattern of Kiss1-expressing neurons in the hypothalamus of males and females. Here we examine whether oestradiol (E2) regulates the hypothalamic Kiss1 expression in a similar way as described for spontaneously ovulating rodent species. By means of in situ hybridisation, we measured Kiss1 mRNA among groups of ovary-intact, ovariectomized (OVX) and OVX females treated with E2 (OVX + E2). In the arcuate nucleus (ARC), Kiss1 expression increased after ovariectomy and decreased with E2 treatment. In the preoptic region, Kiss1 expression after gonadectomy was similar to the level of wild-caught gonad-intact controls, but was dramatically upregulated with E2 treatment. The data suggest that, similar to other species, Kiss1 neurons in the ARC, which are inhibited by E2, play a role in the negative feedback control on GnRH release. The exact role of the Kiss1 neuron population in the preoptic region, which is stimulated by E2, remains to be determined.


Subject(s)
Estradiol , Kisspeptins , Male , Animals , Female , Estradiol/pharmacology , Estradiol/metabolism , Kisspeptins/metabolism , Mole Rats/metabolism , Hypothalamus/metabolism , Gonadotropin-Releasing Hormone/metabolism , Gene Expression , Gene Expression Regulation
5.
Mol Biol Evol ; 40(4)2023 04 04.
Article in English | MEDLINE | ID: mdl-36911907

ABSTRACT

Carotenoid pigments underlie most of the red, orange, and yellow visual signals used in mate choice in vertebrates. However, many of the underlying processes surrounding the production of carotenoid-based traits remain unclear due to the complex nature of carotenoid uptake, metabolism, and deposition across tissues. Here, we leverage the ability to experimentally induce the production of a carotenoid-based red plumage patch in the red-backed fairywren (Malurus melanocephalus), a songbird in which red plumage is an important male sexual signal. We experimentally elevated testosterone in unornamented males lacking red plumage to induce the production of ornamentation and compared gene expression in both the liver and feather follicles between unornamented control males, testosterone-implanted males, and naturally ornamented males. We show that testosterone upregulates the expression of CYP2J19, a gene known to be involved in ketocarotenoid metabolism, and a putative carotenoid processing gene (ELOVL6) in the liver, and also regulates the expression of putative carotenoid transporter genes in red feather follicles on the back, including ABCG1. In black feathers, carotenoid-related genes are downregulated and melanin genes upregulated, but we find that carotenoids are still present in the feathers. This may be due to the activity of the carotenoid-cleaving enzyme BCO2 in black feathers. Our study provides a first working model of a pathway for carotenoid-based trait production in free-living birds, implicates testosterone as a key regulator of carotenoid-associated gene expression, and suggests hormones may coordinate the many processes that underlie the production of these traits across multiple tissues.


Subject(s)
Passeriformes , Songbirds , Animals , Male , Testosterone/metabolism , Pigmentation/genetics , Carotenoids/metabolism , Songbirds/genetics , Feathers , Gene Expression
6.
Nat Ecol Evol ; 6(8): 1221-1230, 2022 08.
Article in English | MEDLINE | ID: mdl-35773345

ABSTRACT

Animal collective motion is a natural phenomenon readily observable in various taxa. Although theoretical models can predict the macroscopic pattern of group movements based on the relative spatial position of group members, it is poorly understood how group members exchange directional information, which enables the spatial coordination between individuals during collective motion. To test if vocalizations emitted during flocking flight are used by birds to transmit directional information between group members, we recorded vocal behaviour, head orientation and spatial position of each individual in a small flock of zebra finches (Taeniopygia guttata) flying in a wind tunnel. We found that the finches can use both visual and acoustic cues for three-dimensional flock coordination. When visual information is insufficient, birds can increasingly exploit active vocal communication to avoid collisions with flock mates. Our study furthers the mechanistic understanding of collective motion in birds and highlights the impact interindividual vocal interactions can have on group performances in these animals.


Subject(s)
Finches , Vocalization, Animal , Animals , Communication , Cues
7.
Biology (Basel) ; 10(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34827092

ABSTRACT

Birdsong is a precisely timed animal behavior. The connectivity of song premotor neural networks has been proposed to underlie the temporal patterns of neuronal activity that control vocal muscle movements during singing. Although the connectivity of premotor nuclei via chemical synapses has been characterized, electrical synapses and their molecular identity remain unexplored. We show with in situ hybridizations that GJD2 mRNA, coding for the major channel-forming electrical synapse protein in mammals, connexin 36, is expressed in the two nuclei that control song production, HVC and RA from canaries and zebra finches. In canaries' HVC, GJD2 mRNA is extensively expressed in GABAergic and only a fraction of glutamatergic cells. By contrast, in RA, GJD2 mRNA expression is widespread in glutamatergic and GABAergic neurons. Remarkably, GJD2 expression is similar in song nuclei and their respective embedding brain regions, revealing the widespread expression of GJD2 in the avian brain. Inspection of a single-cell sequencing database from zebra and Bengalese finches generalizes the distributions of electrical synapses across cell types and song nuclei that we found in HVC and RA from canaries, reveals a differential GJD2 mRNA expression in HVC glutamatergic subtypes and its transient increase along the neurogenic lineage. We propose that songbirds are a suitable model to investigate the contribution of electrical synapses to motor skill learning and production.

8.
Front Neurosci ; 15: 680530, 2021.
Article in English | MEDLINE | ID: mdl-34135731

ABSTRACT

Singing occurs in songbirds of both sexes, but some species show typical degrees of sex-specific performance. We studied the transcriptional sex differences in the HVC, a brain nucleus critical for song pattern generation, of the forest weaver (Ploceus bicolor), the blue-capped cordon-bleu (Uraeginthus cyanocephalus), and the canary (Serinus canaria), which are species that show low, medium, and high levels of sex-specific singing, respectively. We observed persistent sex differences in gene expression levels regardless of the species-specific sexual singing phenotypes. We further studied the HVC transcriptomes of defined phenotypes of canary, known for its testosterone-sensitive seasonal singing. By studying both sexes of canaries during both breeding and non-breeding seasons, non-breeding canaries treated with testosterone, and spontaneously singing females, we found that the circulating androgen levels and sex were the predominant variables associated with the variations in the HVC transcriptomes. The comparison of natural singing with testosterone-induced singing in canaries of the same sex revealed considerable differences in the HVC transcriptomes. Strong transcriptional changes in the HVC were detected during the transition from non-singing to singing in canaries of both sexes. Although the sex-specific genes of singing females shared little resemblance with those of males, our analysis showed potential functional convergences. Thus, male and female songbirds achieve comparable singing behaviours with sex-specific transcriptomes.

9.
Stem Cell Reports ; 16(4): 784-796, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33740464

ABSTRACT

The ability to genetically manipulate organisms has led to significant insights into functional genomics in many species. In birds, manipulation of the genome is hindered by the inaccessibility of the one-cell embryo. During embryonic development, avian primordial germ cells (PGCs) migrate through the bloodstream and reach the gonadal anlage, where they develop into mature germ cells. Here, we explored the use of PGCs to produce transgenic offspring in the zebra finch, which is a major animal model for sexual brain differentiation, vocal learning, and vocal communication. Zebra finch PGCs (zfPGCs) obtained from embryonic blood significantly proliferated when cultured in an optimized culture medium and conserved the expression of germ and stem cell markers. Transduction of cultured zfPGCs with lentiviral vectors was highly efficient, leading to strong expression of the enhanced green fluorescent protein. Transduced zfPGCs were injected into the host embryo and transgenic songbirds were successfully generated.


Subject(s)
Genetic Vectors/metabolism , Genome , Germ Cells/metabolism , Lentivirus/genetics , Songbirds/genetics , Animals , Animals, Genetically Modified , Biomarkers/metabolism , Cell Proliferation , Cells, Cultured , Embryo, Nonmammalian/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gonads/cytology , Green Fluorescent Proteins/metabolism , Male , Receptors, LDL/genetics , Receptors, LDL/metabolism , Songbirds/blood , Songbirds/embryology , Transduction, Genetic , Up-Regulation/genetics
10.
Front Zool ; 18(1): 8, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33627161

ABSTRACT

BACKGROUND: The connection between testosterone and territoriality in free-living songbirds has been well studied in a reproductive context, but less so outside the breeding season. To assess the effects of seasonal androgenic action on territorial behavior, we analyzed vocal and non-vocal territorial behavior in response to simulated territorial intrusions (STIs) during three life-cycle stages in free-living male black redstarts: breeding, molt and nonbreeding. Concurrently, we measured changes in circulating testosterone levels, as well as the mRNA expression of androgen and estrogen receptors and aromatase in the preoptic, hypothalamic and song control brain areas that are associated with social and vocal behaviors. RESULTS: Territorial behavior and estrogen receptor expression in hypothalamic areas did not differ between stages. But plasma testosterone was higher during breeding than during the other stages, similar to androgen receptor and aromatase expression in the preoptic area. The expression of androgen receptors in the song control nucleus HVC was lower during molt when birds do not sing or sing rarely, but similar between the breeding and the nonbreeding stage. Nevertheless, some song spectral features and the song repertoire differed between breeding and nonbreeding. Territorial behavior and song rate correlated with the expression of steroid receptors in hypothalamic areas, and in the song control nucleus lMAN. CONCLUSIONS: Our results demonstrate seasonal modulation of song, circulating testosterone levels, and brain sensitivity to androgens, but a year-round persistency of territorial behavior and estrogen receptor expression in all life-cycle stages. This suggests that seasonal variations in circulating testosterone concentrations and brain sensitivity to androgens is widely uncoupled from territorial behavior and song activity but might still affect song pattern. Our study contributes to the understanding of the complex comparative neuroendocrinology of song birds in the wild.

11.
Mol Biol Evol ; 38(1): 108-127, 2021 01 04.
Article in English | MEDLINE | ID: mdl-32781465

ABSTRACT

Presumably, due to a rapid early diversification, major parts of the higher-level phylogeny of birds are still resolved controversially in different analyses or are considered unresolvable. To address this problem, we produced an avian tree of life, which includes molecular sequences of one or several species of ∼90% of the currently recognized family-level taxa (429 species, 379 genera) including all 106 family-level taxa of the nonpasserines and 115 of the passerines (Passeriformes). The unconstrained analyses of noncoding 3-prime untranslated region (3'-UTR) sequences and those of coding sequences yielded different trees. In contrast to the coding sequences, the 3'-UTR sequences resulted in a well-resolved and stable tree topology. The 3'-UTR contained, unexpectedly, transcription factor binding motifs that were specific for different higher-level taxa. In this tree, grebes and flamingos are the sister clade of all other Neoaves, which are subdivided into five major clades. All nonpasserine taxa were placed with robust statistical support including the long-time enigmatic hoatzin (Opisthocomiformes), which was found being the sister taxon of the Caprimulgiformes. The comparatively late radiation of family-level clades of the songbirds (oscine Passeriformes) contrasts with the attenuated diversification of nonpasseriform taxa since the early Miocene. This correlates with the evolution of vocal production learning, an important speciation factor, which is ancestral for songbirds and evolved convergent only in hummingbirds and parrots. As 3'-UTR-based phylotranscriptomics resolved the avian family-level tree of life, we suggest that this procedure will also resolve the all-species avian tree of life.


Subject(s)
3' Untranslated Regions , Birds/genetics , Phylogeny , Animals
12.
Front Neurosci ; 14: 588672, 2020.
Article in English | MEDLINE | ID: mdl-33343284

ABSTRACT

Social animals flexibly use a variety of vocalizations to communicate in complex and dynamic environments. However, it remains unknown whether the auditory perception of different vocalizations changes according to the ecological context. By using miniature wireless devices to synchronously record vocal interactions and local neural activity in freely-behaving zebra finches in combination with playback experiments, we investigate whether the auditory processing of vocalizations changes across life-history stages. We show that during breeding, females (but not males) increase their estrogen levels and reply faster to their mates when interacting vocally. These changes are associated with an increase in the amplitude of the female's neural auditory responses. Furthermore, the changes in auditory response are not general, but specific to a subset of functionally distinct vocalizations and dependent on the emitter's identity. These results provide novel insights into auditory plasticity of communication systems, showing that the perception of specific signals can shift according to ecologically-determined physiological states.

13.
Cell Rep ; 33(6): 108364, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33176132

ABSTRACT

Understanding the structure and function of neural circuits underlying speech and language is a vital step toward better treatments for diseases of these systems. Songbirds, among the few animal orders that share with humans the ability to learn vocalizations from a conspecific, have provided many insights into the neural mechanisms of vocal development. However, research into vocal learning circuits has been hindered by a lack of tools for rapid genetic targeting of specific neuron populations to meet the quick pace of developmental learning. Here, we present a viral tool that enables fast and efficient retrograde access to projection neuron populations. In zebra finches, Bengalese finches, canaries, and mice, we demonstrate fast retrograde labeling of cortical or dopaminergic neurons. We further demonstrate the suitability of our construct for detailed morphological analysis, for in vivo imaging of calcium activity, and for multi-color brainbow labeling.


Subject(s)
Neurons/physiology , Vocalization, Animal/physiology , Animals , Mice , Songbirds
14.
J Neurosci ; 40(32): 6219-6227, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32661023

ABSTRACT

Premotor predictions facilitate vocal interactions. Here, we study such mechanisms in the forebrain nucleus HVC (proper name), a cortex-like sensorimotor area of songbirds, otherwise known for being essential for singing in zebra finches. To study the role of the HVC in calling interactions between male and female mates, we used wireless telemetric systems for simultaneous measurement of neuronal activity of male zebra finches and vocalizations of males and females that freely interact with each other. In a non-social context, male HVC neurons displayed stereotypic premotor activity in relation to active calling and showed auditory-evoked activity to hearing of played-back female calls. In a social context, HVC neurons displayed auditory-evoked activity to hearing of female calls only if that neuron showed activity preceding the upcoming female calls. We hypothesize that this activity preceding the auditory-evoked activity in the male HVC represents a neural correlate of behavioral anticipation, predictive activity that helps to coordinate vocal communication between social partners.SIGNIFICANCE STATEMENT Most social-living vertebrates produce large numbers of calls per day, and the calls have prominent roles in social interactions. Here, we show neuronal mechanisms that are active during call-based vocal communication of zebra finches, a highly social songbird species. HVC, a forebrain nucleus known for its importance in control of learned vocalizations of songbirds, displays predictive activity that may enable the male to adjust his own calling pattern to produce very fast sequences of male female call exchanges.


Subject(s)
Evoked Potentials, Auditory , Prosencephalon/physiology , Vocalization, Animal , Animals , Female , Finches , Male , Neurons/physiology , Prosencephalon/cytology , Sexual Behavior, Animal , Wireless Technology
15.
Behav Ecol ; 31(1): 247-260, 2020.
Article in English | MEDLINE | ID: mdl-32372855

ABSTRACT

"Monogamy" refers to different components of pair exclusiveness: the social pair, sexual partners, and the genetic outcome of sexual encounters. Avian monogamy is usually defined socially or genetically, whereas quantifications of sexual behavior remain scarce. Jackdaws (Corvus monedula) are considered a rare example of strict monogamy in songbirds, with lifelong pair bonds and little genetic evidence for extrapair (EP) offspring. Yet jackdaw copulations, although accompanied by loud copulation calls, are rarely observed because they occur visually concealed inside nest cavities. Using full-day nest-box video surveillance and on-bird acoustic bio-logging, we directly observed jackdaw sexual behavior and compared it to the corresponding genetic outcome obtained via molecular parentage analysis. In the video-observed nests, we found genetic monogamy but frequently detected forced EP sexual behavior, accompanied by characteristic male copulation calls. We, thus, challenge the long-held notion of strict jackdaw monogamy at the sexual level. Our data suggest that male mate guarding and frequent intrapair copulations during the female fertile phase, as well as the forced nature of the copulations, could explain the absence of EP offspring. Because EP copulation behavior appeared to be costly for both sexes, we suggest that immediate fitness benefits are an unlikely explanation for its prevalence. Instead, sexual conflict and dominance effects could interact to shape the spatiotemporal pattern of EP sexual behavior in this species. Our results call for larger-scale investigations of jackdaw sexual behavior and parentage and highlight the importance of combining social, sexual, and genetic data sets for a more complete understanding of mating systems.

16.
Front Zool ; 17: 5, 2020.
Article in English | MEDLINE | ID: mdl-32021638

ABSTRACT

BACKGROUND: The astonishing variety of sounds that birds can produce has been the subject of many studies aiming to identify the underlying anatomical and physical mechanisms of sound production. An interesting feature of some bird vocalisations is the simultaneous production of two different frequencies. While most work has been focusing on songbirds, much less is known about dual-sound production in non-passerines, although their sound production organ, the syrinx, would technically allow many of them to produce "two voices". Here, we focus on the king penguin, a colonial seabird whose calls consist of two fundamental frequency bands and their respective harmonics. The calls are produced during courtship and for partner and offspring reunions and encode the birds' identity. We dissected, µCT-scanned and analysed the vocal tracts of six adult king penguins from Possession Island, Crozet Archipelago. RESULTS: King penguins possess a bronchial type syrinx that, similarly to the songbird's tracheobronchial syrinx, has two sets of vibratory tissues, and thus two separate sound sources. Left and right medial labium differ consistently in diameter between 0.5 and 3.2%, with no laterality between left and right side. The trachea has a conical shape, increasing in diameter from caudal to cranial by 16%. About 80% of the king penguins' trachea is medially divided by a septum consisting of soft elastic tissue (septum trachealis medialis). CONCLUSIONS: The king penguins' vocal tract appears to be mainly adapted to the life in a noisy colony of a species that relies on individual vocal recognition. The extent between the two voices encoding for individuality seems morphologically dictated by the length difference between left and right medial labium. The septum trachealis medialis might support this extent and could therefore be an important anatomical feature that aids in the individual recognition process.

17.
Proc Natl Acad Sci U S A ; 117(38): 23311-23316, 2020 09 22.
Article in English | MEDLINE | ID: mdl-31332005

ABSTRACT

Prolonged social isolation has negative effects on brain and behavior in humans and other social organisms, but neural mechanisms leading to these effects are not understood. Here we tested the hypothesis that even brief periods of social isolation can alter gene expression and DNA methylation in higher cognitive centers of the brain, focusing on the auditory/associative forebrain of the highly social zebra finch. Using RNA sequencing, we first identified genes that individually increase or decrease expression after isolation and observed general repression of gene sets annotated for neurotrophin pathways and axonal guidance functions. We then pursued 4 genes of large effect size: EGR1 and BDNF (decreased by isolation) and FKBP5 and UTS2B (increased). By in situ hybridization, each gene responded in different cell subsets, arguing against a single cellular mechanism. To test whether effects were specific to the social component of the isolation experience, we compared gene expression in birds isolated either alone or with a single familiar partner. Partner inclusion ameliorated the effect of solo isolation on EGR1 and BDNF, but not on FKBP5 and UTS2B nor on circulating corticosterone. By bisulfite sequencing analysis of auditory forebrain DNA, isolation caused changes in methylation of a subset of differentially expressed genes, including BDNF. Thus, social isolation has rapid consequences on gene activity in a higher integrative center of the brain, triggering epigenetic mechanisms that may influence processing of ongoing experience.


Subject(s)
Finches/genetics , Prosencephalon/metabolism , Social Isolation , Animals , Behavior, Animal , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Corticosterone/blood , DNA Methylation , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Female , Finches/blood , Finches/physiology , Male , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
18.
Horm Behav ; 117: 104614, 2020 01.
Article in English | MEDLINE | ID: mdl-31647922

ABSTRACT

Females of many northern temperate songbird species sing sporadically. However, detailed descriptions of female song are rare. Here we report a detailed analysis of song in a small number of spontaneously-singing female domesticated canaries (Serinus canaria) under non-breeding, laboratory conditions in a large population of domesticated birds. In-depth analysis showed that these females sang rarely, and the spontaneous songs varied between and within birds over time. Furthermore, spontaneous female songs were distinct from songs of testosterone-induced singing female canaries and from songs of male canaries in both temporal and spectral features. Singing females had significantly elevated plasma androgen levels and a larger size of the major song controlling brain nuclei HVC (used as a proper name) and the robust nucleus of the arcopallium (RA) than non-singing females housed under similar conditions. The sporadically observed production of song and accompanying differences in brain anatomy in female canaries may thus depend on minute intraspecific differences in androgen levels.


Subject(s)
Androgens/blood , Brain/anatomy & histology , Canaries/physiology , Vocalization, Animal/physiology , Acoustics , Animals , Canaries/anatomy & histology , Canaries/blood , Female , Male , Songbirds/anatomy & histology , Songbirds/blood , Songbirds/physiology , Testosterone/blood
19.
Sci Rep ; 9(1): 11501, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31395925

ABSTRACT

Exposure of the vertebrate embryo to maternal hormones can have long-lasting effects on its phenotype, which has been studied extensively by experimentally manipulating maternal steroids, mostly androgens, in bird eggs. Yet, there is a severe lack of understanding of how and when these effects are actually mediated, hampering both underlying proximate and ultimate explanations. Here we report a novel finding that the embryo expresses androgen receptor (AR) and estrogen receptor (ERα) mRNA in its extraembryonic membranes (EMs) as early as before its own hormone production starts, suggesting a novel substrate for action of maternal hormones on the offspring. We also report the first experimental evidence for steroid receptor regulation in the avian embryo in response to yolk steroid levels: the level of AR is dependent on yolk androgen levels only in the EMs but not in body tissues, suggesting embryonic adaptation to maternal hormones. The results also solve the problem of uptake of lipophilic steroids from the yolk, why they affect multiple traits, and how they could mediate maternal effects without affecting embryonic sexual differentiation.


Subject(s)
Egg Yolk/metabolism , Extraembryonic Membranes/metabolism , Receptors, Steroid/metabolism , Steroids/metabolism , Animals , Birds , Chick Embryo , Female , Maternal Exposure
20.
Nat Commun ; 10(1): 2577, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31189912

ABSTRACT

Many organisms coordinate rhythmic motor actions with those of a partner to generate cooperative social behavior such as duet singing. The neural mechanisms that enable rhythmic interindividual coordination of motor actions are unknown. Here we investigate the neural basis of vocal duetting behavior by using an approach that enables simultaneous recordings of individual vocalizations and multiunit vocal premotor activity in songbird pairs ranging freely in their natural habitat. We find that in the duet-initiating bird, the onset of the partner's contribution to the duet triggers a change in rhythm in the periodic neural discharges that are exclusively locked to the initiating bird's own vocalizations. The resulting interindividually synchronized neural activity pattern elicits vocalizations that perfectly alternate between partners in the ongoing song. We suggest that rhythmic cooperative behavior requires exact interindividual coordination of premotor neural activity, which might be achieved by integration of sensory information originating from the interacting partner.


Subject(s)
Behavior, Animal/physiology , Cooperative Behavior , Motor Cortex/physiology , Songbirds/physiology , Vocalization, Animal/physiology , Animals , Female , Learning , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...