Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Omega ; 8(30): 27612-27620, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37546616

ABSTRACT

Developing non-carbon-based adsorbents is essential for removing heavy metals from post-incineration flue gas. In this study, a new high-temperature-resistant adsorbent-activated boron nitride (BN) was prepared using precursors combined with a high-temperature activation method. The adsorption characteristics of BN for Zn, Cu, and Cd in simulated flue gas and sludge incineration flue gas were investigated using gas-phase heavy metal adsorption experiments. The results showed that BN prepared at 1350 °C for 4 h had defect structures, abundant pores, functional groups, and a high specific surface area of 658 m2/g. The adsorption capacity of BN in simulated flue gases decreases with increasing adsorption temperature, whereas it is always higher than that of activated carbon (AC). The total adsorption capacities for Zn, Cu, and Cd were the highest at 50 °C with 48.3 mg/g. BN had strong adsorption selectivity for Zn, with a maximum adsorption capacity of 54.45 mg/g, and its adsorption process occurred mainly on the surface. Cu and Cd inhibited Zn adsorption, leading to a decrease in the Zn adsorption capacity. In sludge incineration flue gas, BN can quickly reach adsorption equilibrium. The BN had a synergistic disposal capacity for heavy metals and fine particulate matter. The maximum adsorption capacity was reduced compared to the simulated flue gas adsorption capacity, which was 5.1 mg/g. However, BN still exhibited a strong adsorption selectivity for Zn, and its adsorption capacity was always greater than that of AC. The rich functional groups and high specific surface area enable BN to physically and chemically double-adsorb heavy metals.

2.
Article in English | MEDLINE | ID: mdl-36078840

ABSTRACT

With the rapid development of industry, the disposal of industrial solid waste needs to be solved urgently in China. Thus, an effective disposal method should be proposed to recycle these solid wastes in an environmentally friendly and sustainable manner. In this paper, ceramsite was prepared from sewage sludge (SS), magnesite tailings (MTs), and coal gangue (CG). The influence of the material ratio and sintering temperature on the properties of the ceramsite was investigated. The results show that the ceramsite had better properties when the following parameters were used: a ratio of SS: CG: MT of 4.5:4:1.5; a sintering temperature of 1250 °C; a compressive strength of 11.2 MPa (or it can be rounded to 11; our major remark relates to significant figures, and they should be up to 2-3 figures, according to measurement errors); a water absorption of 3.54%; and apparent and bulk densities of 1.19 and 0.81 g/cm3, respectively. The strength was superior to more than twice the 900-density grade prescribed by the Chinese national standard. After sintering, most of the heavy metals in the ceramsite mainly existed in the form of residue state (FD), meaning that they were highly stable. The leaching concentrations of Zn and Ni from the ceramsite were 0.72 and 0.25 mg/L lower than the prescribed regulatory limits (2.0 and 0.1 mg/L). The overall pollution toxicity index (OPTI) was only 240, less than that of raw pellets, indicating that the environmental risk is low. Not only did the ceramsite, prepared from SS, CG, and MT, exhibit excellent chemical properties, but it also proved to be an environmentally safe material. Therefore, it is an effective approach to realize the collaborative treatment of SS, CG, and MT by preparing ceramsite.


Subject(s)
Metals, Heavy , Sewage , Coal , Complex Mixtures , Industrial Waste , Magnesium , Metals, Heavy/chemistry , Sewage/chemistry , Solid Waste
SELECTION OF CITATIONS
SEARCH DETAIL