Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121432, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35660156

ABSTRACT

The timely detection of apple bruises caused by collision and squeeze is of great significance to reduce the economic losses of the apple industry. This study proposed a spectral analysis model (SpectralCNN) based on a one-dimensional convolutional neural network to detect apple bruises. The influences of six spectral preprocessing methods on the SpectralCNN model were firstly analyzed in this paper. Compared with traditional chemometric models, the SpectralCNN model had a better accuracy, which was demonstrated not depend on the spectral preprocessing method by experiment results. Then, 20 characteristic wavelengths could be extracted by successive projection algorithm. The SpectralCNN model could achieve an accuracy of 95.79% on the test set of characteristic wavelengths, indicating that the extracted characteristic wavelengths contain most of the features of bruised and healthy pixels.


Subject(s)
Contusions , Malus , Algorithms , Humans , Neural Networks, Computer
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 275: 121169, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35358780

ABSTRACT

As a common problem in snap beans, hard seed has seriously affected the large-scale industrial planting and yield of snap bean. To realize accurate, quick and non-destructive identifying the hard seeds of snap bean is of great significance to avoiding the effects of hard seeds on germination and growth. This research was based on hyperspectral imaging (HSI) to achieve accurate detection of hard seeds of snap bean. This study obtained the characteristic spectra from the hyperspectral image of a single seed, and then combined the synthetic minority over-sampling technique (SMOTE) and Tomek links to balance the numbers of hard and non-hard seed samples. The characteristic wavelengths were extracted from the average spectrum. Then the average spectrum was processed by first derivative (1D). After that, the characteristic wavelengths could be extracted using successive projections algorithm (SPA). Finally, a radial basis function-support vector machine (RBF-SVM) model was established to realize the intelligent detection of hard seeds, and the detection accuracy rate reached 89.32%. The research results showed that HSI technology could achieved accurate, fast and non-destructive testing of the hard seeds of snap bean, which is of great significance to the large-scale and standardized planting of snap bean and increase the yield per unit area.


Subject(s)
Hyperspectral Imaging , Seeds , Algorithms , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...