Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Foods ; 12(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37627982

ABSTRACT

Hibiscus sabdariffa is a tropical plant with red calyxes whose anthocyanins, phenols, and antioxidant activity make it attractive to consumers both from a nutritional and medicinal standpoint. Its seasonality, perishability, and anthocyanin instability, led to the setup of stabilization methods comprising drying and powdering. However, its properties can often be altered during these stabilization processes. Treatments such as dehumidified-air-drying, infrared drying, and oven-drying, and their combination showed better quality preservation. Moreover, powder production enables superior biomolecule extractability which can be linked to a higher bioaccessibility. However, the required temperatures for powder production increase the bioactive molecules degradation leading to their antioxidant activity loss. To overcome this issue, ambient or cryogenic grinding could be an excellent method to improve the biomolecule bioavailability and accessibility if the processing steps are well mastered. To be sure to benefit from the final nutritional quality of the powder, such as the antioxidant activity of biomolecules, powders have to offer excellent reconstitutability which is linked to powder physicochemical properties and the reconstitution media. Typically, the finest powder granulometry and using an agitated low-temperature reconstitution media allow for improving anthocyanin extractability and stability. In this review, the relevant physicochemical and processing parameters influencing plant powder features from processing transformation to reconstitution will be presented with a focus on bioactive molecules and antioxidant activity preservation.

2.
Foods ; 12(16)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37628116

ABSTRACT

Spray drying (SD) is extensively used to encapsulate lactic acid bacteria in large-scale industrial applications; however, bacteria combat several harms that reduce their viability. In this study, a novel technique called electrostatic spray drying (ESD) was used to explore the benefits and disadvantages of using electrostatic charge and lower temperatures in the system. Freeze drying (FD) was used as a reference. The effect of different encapsulation agents, like maltodextrin, arabic gum, and skim milk, on the viability of Lacticaseibacillus rhamnosus GG (LGG) was investigated. The initial cell concentration, particle size distribution, aspect ratio, sphericity, scanning-electron-microscopy images, moisture content, water activity, glass transition, rehydration abilities, and survival during storage were compared. Skim milk was proven to be the best protectant for LGG, regardless of the drying process or storage time. A huge reduction in cell numbers (4.49 ± 0.06 log CFU/g) was observed with maltodextrin using SD; meanwhile, it was protected with minimum loss (8.64 ± 0.62 log CFU/g) with ESD. In general, ESD preserved more LGG cells during processing compared to SD, and provided better stability than FD and SD during storage, regardless of the applied voltage. The ESD product analysis demonstrated an efficient LGG preservation, close to FD; therefore, ESD presented to be a promising and scalable substitute for SD and FD.

3.
Foods ; 11(24)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36553838

ABSTRACT

Flaxseed (Linum usitatissimum L.) mucilage is one of the most studied plant seed gums in terms of its techno-functional and health-promoting properties. Nonetheless, the interplay of flaxseed gum (FG) with other food biopolymers, such as milk proteins, under in vitro digestion conditions remains underexplored. The aim of the present work was to investigate the colloidal interplay between flaxseed gum (golden or brown) and milk proteins (sodium caseinate or whey protein isolate) under simulated in vitro digestion conditions and its relationship with the attained in vitro protein digestibility. The presence of flaxseed gum in the milk protein food models and in the oral food boluses obtained was associated with the occurrence of segregative microphase separation. Flaxseed gum exhibited a prominent role in controlling the acid-mediated protein aggregation phenomena, particularly in the sodium caseinate gastric chymes. The addition of FG in the food models was associated with a higher amount of intact total caseins and ß-lactoglobulin at the end of the gastric processing step. Monitoring of the intestinal processing step revealed a very advanced cleavage of the whey proteins (>98%) and caseins (>90%). The degree of the milk protein hydrolysis achieved at the end of the intestinal processing was significantly higher in the systems containing flaxseed gum (i.e., 59−62%) than their gum-free protein counterparts (i.e., 46−47%). It was postulated that the electrostatic milk protein complexation capacity and, to a lesser extent, the thickening effect of flaxseed gum influenced the in vitro digestibility of the milk proteins.

4.
Food Chem X ; 14: 100330, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35615260

ABSTRACT

This paper reports on the impact of alfalfa galactomannan (AAG, 0.1, 0.5 or 1% wt.) on the colloidal changes and digestibility of sodium caseinate (NaCN) and whey protein isolate (WPI) dispersions (10% wt.) under static in-vitro digestion conditions. Static laser light scattering and confocal laser scanning microscopy-assisted assessment of the NaCN-based gastric chymes confirmed the ability of AAG to control the acid-induced protein coagulation phenomena. Contrarily, the presence of AAG in the WPI-based gastric chymes was associated with the formation of larger aggregates due to the occurrence of segregative microphase separation. The kinetic modelling of the SDS-PAGE densitometric data showed that the intragastric peptic cleavage rates were higher for caseins than whey proteins (ß-lactoglobulin, α-lactalbumin). However, free amino acid (FAA) release rates did not exceed 12% under intragastric conditions, whilst notably higher release rates were achieved in the intestinal digesta (36-52%). In all cases, the FAA release rates significantly increased in the presence of AAG.

5.
Curr Res Food Sci ; 5: 653-664, 2022.
Article in English | MEDLINE | ID: mdl-35434648

ABSTRACT

Protein inadequacy is the major problem for most plant-based dairy yoghurt substitutes. This study investigated three limited degree of hydrolysis (DH: 1%, 5%, and 9%) of almond protein and the combined effect of DH and hydrolysed almond protein (HP) to non-hydrolysed almond protein (NP) ratios (HP/NP: 40:60, 20:80, 10:90 and 5:95) on the physicochemical properties of resulting fermentation induced almond-based gel (yoghurt). The gel microstructure, particle size, firmness, pH, water holding capacity (WHC), lubrication, flow, and gelation characteristics were measured and associated with the DH, composition, and SDS-PAGE results. The results show significant differences in gel samples with the same HP/NP (40:60) ratio of protein but different protein DH. A higher DH (9%) resulted in samples with lower hardness (6.03 g), viscosity (0.11 Pa s at 50 s-1), cohesiveness (0.63) and higher friction (0.203 at 10 mm/s) compared to sample with 1% DH with higher hardness - 7.34 g, viscosity at 50 s-1 - 0.16 Pa s, cohesiveness - 0.86 and friction at 10 mm/s - 0.194. Comparing samples with the same DH (5%) but different HP/NP ratios showed smaller coarse microgel particles (21.36 µm) and lower hardness (7.17 g), viscosity (0.14 Pa s at 50 s-1) and friction value (0.189 at 10 mm/s) in samples with high HP/NP (40:60) compared to sample with low HP/NP (5:95) that contained significantly large coarse microgel particles (34.61 µm) with the gel being very hard (9.38 g), highly viscous (0.32 Pa s at 50 s-1), and less lubricating (0.220 at 10 mm/s).

6.
Carbohydr Polym ; 289: 119424, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35483838

ABSTRACT

In the present work, the structuring and stabilising potential of flaxseed gum (FG) in whey protein isolate (WPI) cryo-hydrogels was investigated. The FG presence (0.1-1% wt.) in the heat-treated WPI dispersions (10% wt.) induced strong segregative phase separation phenomena, which were associated with a depletion flocculation mechanism. The cryotropic processing of the WPI-FG solutions led to the formation of diverse macroporous protein gel networks depending on the colloidal state of their biopolymeric precursors. Cryogel formation was primarily mediated via covalent (thiol-disulphide bond) bridging, whilst to a lesser extent, non-covalent interactions contributed to the overall stabilisation of the protein gel network. Although FG had a rather minor contribution to the formation of elastically active crosslinks (FG was partitioning mainly into the serum phase located in the macropores), its presence (at concentrations ≥0.75% wt.) improved the homogeneity and interconnectivity of the stranded protein network, whilst it reduced its colloidal instability and macroporosity.


Subject(s)
Flax , Flax/chemistry , Hot Temperature , Hydrogels , Whey Proteins/chemistry
7.
Int J Biol Macromol ; 192: 1217-1230, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34666134

ABSTRACT

The present work aimed at investigating an extraction protocol based on consecutive steps of isoelectric point (pH ~ 4.25) mediated gum swelling and deproteinisation as an alternative method to produce flaxseed gum extracts of enhanced techno-functional characteristics. The osidic and proximate composition, structure conformation, flow behaviour, dynamic rheological and thermal properties of gums isolated from brown and golden flaxseeds were assessed. Gum extraction under near-to-isoelectric point conditions did not impair the extraction yield, residual protein and ash content, whilst it resulted in minor changes in the sugar composition of the flaxseed gum extracts. The deconvolution of the GPC/SEC chromatographs revealed the presence of four major polysaccharidic populations corresponding to arabinoxylans, rhamnogalacturonan-I and two AX-RG-I composite fractions. The latter appeared to minimise the intra- and interchain polymer non-covalent interactions (hydrogen bonding) leading to a better solvation affinity in water and lyotropic solvents. Golden flaxseed gums exerted higher molecular weight (Mw = 1.34-1.15 × 106 Da) and intrinsic viscosities (6.63-5.13 dL g-1) as well as better thickening and viscoelastic performance than the brown flaxseed gum exemplars. Golden flaxseed gums exhibited a better thermal stability compared to the brown flaxseed counterparts and therefore, they are suitable for product applications involving severe heat treatments.


Subject(s)
Flax/chemistry , Hydrogen-Ion Concentration , Molecular Conformation , Phytochemicals/chemistry , Plant Gums/chemistry , Plant Gums/isolation & purification , Rheology , Solvents/chemistry , Chemical Fractionation , Chemical Phenomena , Molecular Structure , Viscosity
8.
Curr Res Food Sci ; 4: 577-587, 2021.
Article in English | MEDLINE | ID: mdl-34485926

ABSTRACT

The influence of the protein, fat and sugar in almond milk on the formation of the acidic gel was investigated by determining their physicochemical and microstructural properties. The protein, fat and sugar in the almond milk were varied from 2% to 6%, 0.8%-7% and 0.6%-7%, respectively and fermented using Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophiles cultures to form a gel structure. Both protein and fat increased the gel strength, viscosity (stirred gel) and lightness of almond yoghurts as the concentration increased. The addition of protein content increased the cohesiveness (from 0.70 to 1.17), water holding capacity (from 28.75% to 52.22%) and D4,3 value of particle size (from 32.76 µm to 44.41 µm) of almond yoghurt. Fat reduction decreased the firmness (from 6.56 g to 4.69 g), D4,3 value (from 88.53 µm to 18.37 µm), and water holding capacity (from 48.96% to 27.66%) of almond yoghurt. With sugar addition, almond yoghurt showed increased adhesiveness, decreased lightness and a low pH, with no significant difference in firmness, particle size, and flow behaviour. The confocal images provided evidence that the fortified protein contents homogeneously entrapped fat globules resulting in a more stable gel network and increased fat content led to large fat globule formation resulting in a harder gel network, while the added sugar did not significantly affect the gel network. The results suggested that the protein fortification enhances the texture of almond yoghurt. The fat content of 7% with 3.5% protein showed poor consistency and gel strength of yoghurt. Sugar mainly contributed to bacterial metabolism during fermentation.

9.
Carbohydr Polym ; 267: 118190, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34119158

ABSTRACT

Cryotropic gelation is one of the most common approaches to design novel hydrogels with multifaceted technological and biological functionalities. In the present paper, we studied the ability of highly galactosyl-substituted galactomannans, i.e. fenugreek and alfalfa gum, to form physically crosslinked hydrogels via cryogenic processing. Cycling of the galactomannan solutions (0.25 to 4% wt) from 25 to -20 to 25 °C induced the physical crosslinking of the galactomannan chains leading to the formation of different cryogel structures, i.e. filamentous aggregates (c* < c < 1%), cellular-like gel networks (1 ≤ c < 4%) or a homogeneously swollen gel (c ≥ 4%), depending on the total biopolymer content. Alfalfa gum-based cryogels exhibited higher elasticity and stiffness, better uniformity of the structure and a lower macropore size than their fenugreek counterparts. The physical blending of alfalfa or fenugreek gum with locust bean gum (2% total biopolymer) led to the reinforcement of the mechanical properties of the cryogels without significantly altering their microstructural aspects.


Subject(s)
Cryogels/chemistry , Mannans/chemistry , Medicago sativa/chemistry , Seeds/chemistry , Trigonella/chemistry , Elastic Modulus , Fabaceae/chemistry , Galactans/chemistry , Galactose/analogs & derivatives , Plant Gums/chemistry , Porosity
10.
Data Brief ; 37: 107160, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34113702

ABSTRACT

Brewers' Spent Grain (BSG) is the primary waste of the beer brewing process, which comprises a plethora of nutritionally appealing ingredients such as proteins, dietary fibres, essential lipids and micronutrients. In our previous study [1], the acid-induced gelation capacity of BSG protein isolate as influenced by the thermal pre-treatment severity was systematically investigated. In the present work, we aimed at providing a dataset outlining the gastrointestinal fate of the acid gels under simulating pre-absorptive digestion conditions adopting the INFOGEST static in-vitro digestion protocol. Protein hydrogel digestibility was assessed by quantification of the total soluble nitrogen content in the initial acid gels as well as the obtained gastric and small intestine chymes. The extent of proteolysis occurring in the oral, gastric and intestinal phases was investigated by SDS-PAGE and the molecular weight distribution of the proteins in the obtained gastric chymes and intestinal digesta was determined by image analysis. The dataset can be deployed to assist food scientists in the design and development of alternative protein-based food and food supplement products adopting the "waste-to-fork" concept.

11.
Foods ; 10(5)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062810

ABSTRACT

Lactic acid bacteria (LAB) have been studied for several decades to understand and determine their mechanism and interaction within the matrix into which they are introduced. This study aimed to determine the spatial distribution of Lacticaseibacillus rhamnosus GG (LGG) in a dairy matrix and to decipher its behaviour towards milk components, especially fat globules. Two strains of this widely studied bacterium with expected probiotic effects were used: LGG WT with pili on the cell surface and its pili-depleted mutant-LGG ΔspaCBA-in order to determine the involvement of these filamentous proteins. In this work, it was shown that LGG ΔspaCBA was able to limit creaming with a greater impact than the wild-type counterpart. Moreover, confocal imaging evidenced a preferential microbial distribution as aggregates for LGG WT, while the pili-depleted strain tended to be homogenously distributed and found as individual chains. The observed differences in creaming are attributed to the indirect implication of SpaCBA pili. Indeed, the bacteria-to-bacteria interaction surpassed the bacteria-to-matrix interaction, reducing the bacterial surface exposed to raw milk. Conversely, LGG ΔspaCBA may form a physical barrier responsible for preventing milk fat globules from rising to the surface.

12.
Food Chem ; 361: 130136, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34051599

ABSTRACT

Alterations in surface chemical composition relating to rehydration properties of spray-dried camel milk powders during accelerated storage (11-33% RH, 37 °C) over 18 weeks were investigated. The results showed that the surface of the fresh spray-dried camel milk powder (t = 0) was dominated by lipids (78%), followed by proteins (16%) and lactose (6%). During storage, the surface protein and lactose content decreased while the surface lipid content increased, resulting in an increase in surface hydrophobicity and slight agglomeration of the powder, especially for powder kept at 33% RH. Although fresh camel milk powder had very poor wettability, it displayed very high dispersibility and solubility (99%). During storage, dispersibility and solubility declined with increasing storage time and increasing RH levels, which correlated with an increase in surface lipid content. However, at the end of the storage period, camel milk powder still retained very high solubility (>93%).


Subject(s)
Camelus , Milk/chemistry , Animals , Hydrophobic and Hydrophilic Interactions , Lactose/chemistry , Lactose/metabolism , Powders/chemistry , Solubility , Surface Properties , Wettability
13.
Carbohydr Polym ; 256: 117394, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33483006

ABSTRACT

In the present work a galactomannan extract of low protein residue (< 1.3 % wt dry basis) was isolated from alfalfa (Medicago sativa L.) seed endosperm meal. The alfalfa gum (AAG) comprised primarily mannose and galactose at a ratio of 1.18:1, had a molecular weight of 2 × 106 Da and a radius of gyration of 48.7 nm. The average intrinsic viscosity of the dilute AAG dispersions calculated using the modified Mark-Houwink, Huggins and Kraemer equations was 9.33 dLg-1 at 25 °C. The critical overlap concentration was estimated at 0.306 % whereas the concentration dependence of specific viscosity for the dilute and semi-dilute regimes was ∝ C2.3 and C4.2, respectively. The compliance to the Cox-Merz rule was satisfied at 1% of AAG, whereas a departure from superimposition was observed at higher concentrations. Viscoelasticity measurements demonstrated that AAG dispersions exhibit a predominant viscous character at 1 % wt, whereas a weak gel-like behaviour was reached at AAG concentrations ≥3 %.


Subject(s)
Mannans/chemistry , Medicago sativa/chemistry , Plant Gums/chemistry , Seeds/chemistry , Elasticity , Endosperm/chemistry , Galactose/analysis , Hydrogen-Ion Concentration , Mannose/analysis , Molecular Weight , Oscillometry , Rheology , Shear Strength , Sugars/chemistry , Trigonella/chemistry , Uronic Acids/chemistry , Viscosity
14.
J Colloid Interface Sci ; 582(Pt B): 764-772, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32916574

ABSTRACT

Surface protection against biofilms is still an open challenge. Current strategies rely on coatings that are meant to guarantee antiadhesive or antimicrobial effects. While it seems difficult to ensure antiadhesion in complex media and against all the adhesive arsenal of microbes, strategies based on antimicrobials lack from sustainable functionalization methodologies to allow the perfect efficiency of the grafted molecules. Here we used the high affinity ligand-receptor interaction between biotin and streptavidin to functionalize surfaces with lysozyme, an enzyme that degrades the bacterial peptidoglycan cell wall. Biotinylated lysozyme was grafted on surfaces coated with streptavidin receptors. Using atomic force microscopy (AFM)-based single molecule force spectroscopy, we showed that grafting through ligand-receptor interaction allows the correct orientation of the enzyme on the substrate for enhanced activity towards the microbial target. The antibacterial efficiency was tested against Micrococcus luteus and revealed that surface protection was improved when lysozyme was grafted through the ligand-receptor interaction. These results suggest that bio-molecular interactions are promising for a sustainable grafting of antimicrobial agents on surfaces.


Subject(s)
Anti-Infective Agents , Muramidase , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Microscopy, Atomic Force , Streptavidin , Surface Properties
15.
Soft Matter ; 16(40): 9273-9291, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32930313

ABSTRACT

Some food and ferment manufacturing steps such as spray-drying result in the application of viscous stresses to bacteria. This study explores how a viscous flow impacts both bacterial adhesion functionality and bacterial cell organization using a combined experimental and modeling approach. As a model organism we study Lactobacillus rhamnosus GG (LGG) "wild type" (WT), known to feature strong adhesive affinities towards beta-lactoglobulin thanks to pili produced by the bacteria on cell surfaces, along with three cell-surface mutant strains. Applying repeated flows with high shear-rates reduces bacterial adhesive abilities up to 20% for LGG WT. Bacterial chains are also broken by this process, into 2-cell chains at low industrial shear rates, and into single cells at very high shear rates. To rationalize the experimental observations we study numerically and analytically the Stokes equations describing viscous fluid flow around a chain of elastically connected spheroidal cell bodies. In this model setting we examine qualitatively the relationship between surface traction (force per unit area), a proxy for pili removal rate, and bacterial chain length (number of cells). Longer chains result in higher maximal surface tractions, particularly at the chain extremities, while inner cells enjoy a small protection from surface tractions due to hydrodynamic interactions with their neighbors. Chain rupture therefore may act as a mechanism to preserve surface adhesive functionality in bacteria.


Subject(s)
Lacticaseibacillus rhamnosus , Probiotics , Bacterial Adhesion , Fimbriae, Bacterial
16.
Food Chem ; 333: 127514, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32683259

ABSTRACT

This study investigated the effect of pH on the denaturation extent, the surface chemical composition, the water sorption isotherm and the glass transition temperature of camel and bovine whey protein's powders. The LC-MS analysis indicated that the ß-Lactoglobulin was the most denatured protein in bovine whey powders regardless the pH value, while this protein was totally absent in camel whey. The α-Lactalbumin was relatively heat stable after drying and predominated the powder surface (X-ray photoelectron spectroscopy results) in both camel and bovine whey powders regardless the pH (neutral (6.7) or acidic (4.3 and 4.6)). Analysis of the water sorption isotherms indicated that decreasing the pH induced the increase of the water activity of lactose crystallization for camel and bovine whey powders. Finally, decreasing the pH led to the decrease of the glass transition temperature of camel and bovine whey powder (at 0.13, 0.23, and 0.33 of water activity).


Subject(s)
Powders/chemistry , Whey Proteins/chemistry , Adsorption , Animals , Calorimetry , Camelus , Cattle , Chromatography, High Pressure Liquid , Crystallization , Hydrogen-Ion Concentration , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Lactose/chemistry , Mass Spectrometry , Protein Denaturation , Surface Properties , Transition Temperature , Water/chemistry , Whey Proteins/metabolism
17.
Sci Rep ; 10(1): 7335, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32355239

ABSTRACT

While competition targeting food-borne pathogens is being widely documented, few studies have focused on competition among non-pathogenic food bacteria. Carnobacterium maltaromaticum is a genetically diverse lactic acid bacterium known for comprising several bacteriocinogenic strains with bioprotective potentialities against the food-borne pathogen Listeria monocytogenes. The aim of our study is to examine the network properties of competition among a collection of 73 strains of C. maltaromaticum and to characterize their individual interaction potential. The performed high-throughput competition assays, investigating 5 329 pairwise interactions, showed that intraspecific competition was major in C. maltaromaticum with approximately 56% of the sender strains antagonizing at least one receiver strain. A high diversity of inhibitory and sensitivity spectra was identified along with a majority of narrow inhibitory as well as sensitivity spectra. Through network analysis approach, we determined the highly nested architecture of C. maltaromaticum competition network, thus showing that competition in this species is determined by both the spectrum width of the inhibitory activity of sender strains and the spectrum width of the sensitivity of receiver strains. This study provides knowledge of the competition network in C. maltaromaticum that could be used in rational assembly of compatible microbial strains for the design of mixed starter cultures.


Subject(s)
Antibiosis , Carnobacterium/physiology , Food Contamination , Food Microbiology , Listeria monocytogenes/physiology , Microbial Sensitivity Tests , Animals , Bacteriocins , Binding, Competitive , Fish Products , Fishes/microbiology , Humans , Lactic Acid/metabolism , Meat Products , Species Specificity
18.
Front Microbiol ; 11: 609880, 2020.
Article in English | MEDLINE | ID: mdl-33391233

ABSTRACT

Pili are polymeric proteins located at the cell surface of bacteria. These filamentous proteins play a pivotal role in bacterial adhesion with the surrounding environment. They are found both in Gram-negative and Gram-positive bacteria but differ in their structural organization. Purifying these high molecular weight proteins is challenging and has certainly slowed down their characterization. Here, we propose a chromatography-based protocol, mainly relying on multimodal chromatography (core bead technology using Capto Core 700 resin), to purify sortase-dependent SpaCBA pili from the probiotic strain Lacticaseibacillus rhamnosus GG (LGG). Contrary to previously published methods, this purification protocol does not require specific antibodies nor complex laboratory equipment, including for the multimodal chromatography step, and provides high degree of protein purity. No other proteins were detectable by SDS-PAGE and the 260/280 nm ratio (∼0.6) of the UV spectrum confirmed the absence of any other co-purified macromolecules. One can obtain ∼50 µg of purified pili, starting from 1 L culture at OD600nm ≈ 1, in 2-3 working days. This simple protocol could be useful to numerous laboratories to purify pili from LGG easily. Therefore, the present work should boost specific studies dedicated to LGG SpaCBA pili and the characterization of the interactions occurring with their protein partners at the molecular level. Moreover, this straightforward purification process might be extended to the purification of sortase-dependant pili from other Gram-positive bacteria.

19.
Front Microbiol ; 10: 1512, 2019.
Article in English | MEDLINE | ID: mdl-31333617

ABSTRACT

In the last decade, there has been an increasing interest in the potential health effects associated with the consumption of lactic acid bacteria (LAB) in foods. Some of these bacteria such as Lactobacillus rhamnosus GG (LGG) are known to adhere to milk components, which may impact their distribution and protection within dairy matrices and therefore is likely to modulate the efficiency of their delivery. However, the adhesive behavior of most LAB, as well as its effect on food structuration and on the final bacterial distribution within the food matrix remain very poorly studied. Using a recently developed high-throughput approach, we have screened a collection of 73 LAB strains for their adhesive behavior toward the major whey protein ß-lactoglobulin. Adhesion was then studied by genomics in relation to common bacterial surface characteristics such as pili and adhesion-related domain containing proteins. Representative adhesive and non-adhesive strains have been studied in further depth through biophysical measurement using atomic force microscopy (AFM) and a relation with bacterial distribution in whey protein isolate (WPI) solution has been established. AFM measurements have revealed that bacterial adhesion to ß-lactoglobulin is highly specific and cannot be predicted accurately using only genomic information. Non-adhesive strains were found to remain homogeneously distributed in solution whereas adhesive strains gathered in flocs. These findings show that several LAB strains are able to adhere to ß-lactoglobulin, whereas this had only been previously observed on LGG. We also show that these adhesive interactions present similar characteristics and are likely to impact bacterial location and distribution in dairy matrices containing ß-lactoglobulin. This may help with designing more efficient dairy food matrices for optimized LAB delivery.

20.
Crit Rev Food Sci Nutr ; 59(4): 639-651, 2019.
Article in English | MEDLINE | ID: mdl-28976212

ABSTRACT

The membrane (Milk Fat Globule Membrane - MFGM) surrounding the milk fat globule is becoming increasingly studied for its use in food applications due to proven nutritional and technological properties. This review focuses first on current researches which have been led on the MFGM structure and composition and also on laboratory and industrial purification and isolation methods developed in the last few years. The nutritional, health benefits and techno-functional properties of the MFGM are then discussed. Finally, new techno-functional opportunities of MFGM glycoproteins as a possible ingredient for Lactic Acid Bacteria (LAB) encapsulation are detailed. The ability of MFGM to form liposomes entrapping bioactive compounds has been already demonstrated. One drawback is that liposomes are too small to be used for bacteria encapsulation. For the first time, this review points out the numerous advantages to use MFGM glycoproteins as a protecting, encapsulating matrix for bacteria and especially for LAB.


Subject(s)
Glycolipids/chemistry , Glycoproteins/chemistry , Lactobacillales , Membrane Glycoproteins/analysis , Probiotics/administration & dosage , Animals , Capsules/chemistry , Cattle , Emulsions/chemistry , Glycolipids/isolation & purification , Glycoproteins/isolation & purification , Health Promotion , Lipid Droplets , Liposomes/chemistry , Membrane Lipids/analysis , Milk Proteins , Molecular Structure , Nutritive Value , Phospholipids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...