Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-38004710

ABSTRACT

The unique oligomeric alkaliphilic laccase-like oxidases of the ascomycete C. geniculata VKM F-3561 (with molecular masses about 1035 and 870 kDa) were purified and characterized for the first time. The ability of the enzymes to oxidize phenylpropanoids and phenolic compounds under neutral environmental conditions with the formation of previously unknown di-, tri-, and tetrameric products of transformation was shown. The possibility to obtain industrially valuable compounds (dihydroxybenzyl alcohol and hydroxytyrosol) from caffeic acid using laccase-like oxidases of C. geniculata VKM F-3561 has been shown. Complete nucleotide sequence of the laccase gene, which is expressed at the peak of alkaliphilic laccase activity of the fungus, and its promoter region were determined. Based on the phylogenetic analysis of the nucleotide sequence, the nearest relationship of the isolated laccase gene with similar genes of fungi of the genera Alternaria, Bipolaris, and Cochliobolus was shown. Homologous model of the laccase structure was predicted and a proton channel was found, which was presumably responsible for the accumulation and transport of protons to T2/T3-copper center in the alkaliphilic laccase molecule and providing the functional activity of the enzyme in the neutral alkaline environment conditions.

2.
Chembiochem ; 24(4): e202200600, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36513608

ABSTRACT

Most of the currently known fungal laccases show their maximum activity under acidic environmental conditions. It is known that a decrease in the activity of a typical laccase at neutral or alkaline pH values is the result of an increase in the binding of the hydroxide anion to the T2/T3 copper center, which prevents the transfer of an electron from the T1 Cu to the trinuclear copper center. However, evolutionary pressure has resolved the existing limitations in the catalytic mechanism of laccase, allowing such enzymes to be functionally active under neutral/alkaline pH conditions, thereby giving fungi an advantage for their survival. Combined molecular and biochemical studies, homological modeling, calculation of the electrostatic potential on the Connolly surface at pH 5.0 and 7.0, and structural analysis of the novel alkaliphilic laccase of Myrothecium roridum VKM F-3565 and alkaliphilic and acidophilic fungal laccases with a known structure allowed a new intramolecular channel near the one of the catalytic aspartate residues at T2-copper atom to be found. The amino acid residues of alkaliphilic laccases forming this channel can presumably serve as proton donors for catalytic aspartates under neutral conditions, thus ensuring proper functioning. For the first time for ascomycetous laccases, the production of new trimeric products of phenylpropanoid condensation under neutral conditions has been shown, which could have a potential for use in pharmacology.


Subject(s)
Ascomycota , Hypocreales , Laccase/chemistry , Ascomycota/metabolism , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...