Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37447992

ABSTRACT

In order to ensure sufficient recovery of the human body and brain, healthy sleep is indispensable. For this purpose, appropriate therapy should be initiated at an early stage in the case of sleep disorders. For some sleep disorders (e.g., insomnia), a sleep diary is essential for diagnosis and therapy monitoring. However, subjective measurement with a sleep diary has several disadvantages, requiring regular action from the user and leading to decreased comfort and potential data loss. To automate sleep monitoring and increase user comfort, one could consider replacing a sleep diary with an automatic measurement, such as a smartwatch, which would not disturb sleep. To obtain accurate results on the evaluation of the possibility of such a replacement, a field study was conducted with a total of 166 overnight recordings, followed by an analysis of the results. In this evaluation, objective sleep measurement with a Samsung Galaxy Watch 4 was compared to a subjective approach with a sleep diary, which is a standard method in sleep medicine. The focus was on comparing four relevant sleep characteristics: falling asleep time, waking up time, total sleep time (TST), and sleep efficiency (SE). After evaluating the results, it was concluded that a smartwatch could replace subjective measurement to determine falling asleep and waking up time, considering some level of inaccuracy. In the case of SE, substitution was also proved to be possible. However, some individual recordings showed a higher discrepancy in results between the two approaches. For its part, the evaluation of the TST measurement currently does not allow us to recommend substituting the measurement method for this sleep parameter. The appropriateness of replacing sleep diary measurement with a smartwatch depends on the acceptable levels of discrepancy. We propose four levels of similarity of results, defining ranges of absolute differences between objective and subjective measurements. By considering the values in the provided table and knowing the required accuracy, it is possible to determine the suitability of substitution in each individual case. The introduction of a "similarity level" parameter increases the adaptability and reusability of study findings in individual practical cases.


Subject(s)
Sleep Wake Disorders , Sleep , Humans , Polysomnography/methods , Feasibility Studies , Surveys and Questionnaires
2.
Biomed Eng Lett ; 13(3): 247-272, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37519865

ABSTRACT

The scoring of sleep stages is one of the essential tasks in sleep analysis. Since a manual procedure requires considerable human and financial resources, and incorporates some subjectivity, an automated approach could result in several advantages. There have been many developments in this area, and in order to provide a comprehensive overview, it is essential to review relevant recent works and summarise the characteristics of the approaches, which is the main aim of this article. To achieve it, we examined articles published between 2018 and 2022 that dealt with the automated scoring of sleep stages. In the final selection for in-depth analysis, 125 articles were included after reviewing a total of 515 publications. The results revealed that automatic scoring demonstrates good quality (with Cohen's kappa up to over 0.80 and accuracy up to over 90%) in analysing EEG/EEG + EOG + EMG signals. At the same time, it should be noted that there has been no breakthrough in the quality of results using these signals in recent years. Systems involving other signals that could potentially be acquired more conveniently for the user (e.g. respiratory, cardiac or movement signals) remain more challenging in the implementation with a high level of reliability but have considerable innovation capability. In general, automatic sleep stage scoring has excellent potential to assist medical professionals while providing an objective assessment.

3.
Sensors (Basel) ; 23(11)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37300078

ABSTRACT

Sleep is extremely important for physical and mental health. Although polysomnography is an established approach in sleep analysis, it is quite intrusive and expensive. Consequently, developing a non-invasive and non-intrusive home sleep monitoring system with minimal influence on patients, that can reliably and accurately measure cardiorespiratory parameters, is of great interest. The aim of this study is to validate a non-invasive and unobtrusive cardiorespiratory parameter monitoring system based on an accelerometer sensor. This system includes a special holder to install the system under the bed mattress. The additional aim is to determine the optimum relative system position (in relation to the subject) at which the most accurate and precise values of measured parameters could be achieved. The data were collected from 23 subjects (13 males and 10 females). The obtained ballistocardiogram signal was sequentially processed using a sixth-order Butterworth bandpass filter and a moving average filter. As a result, an average error (compared to reference values) of 2.24 beats per minute for heart rate and 1.52 breaths per minute for respiratory rate was achieved, regardless of the subject's sleep position. For males and females, the errors were 2.28 bpm and 2.19 bpm for heart rate and 1.41 rpm and 1.30 rpm for respiratory rate. We determined that placing the sensor and system at chest level is the preferred configuration for cardiorespiratory measurement. Further studies of the system's performance in larger groups of subjects are required, despite the promising results of the current tests in healthy subjects.


Subject(s)
Signal Processing, Computer-Assisted , Sleep , Male , Female , Humans , Sleep/physiology , Polysomnography , Respiratory Rate , Heart Rate/physiology , Accelerometry
4.
IEEE J Biomed Health Inform ; 26(2): 505-514, 2022 02.
Article in English | MEDLINE | ID: mdl-34310330

ABSTRACT

The scoring of sleep stages is an essential part of sleep studies. The main objective of this research is to provide an algorithm for the automatic classification of sleep stages using signals that may be obtained in a non-obtrusive way. After reviewing the relevant research, the authors selected a multinomial logistic regression as the basis for their approach. Several parameters were derived from movement and breathing signals, and their combinations were investigated to develop an accurate and stable algorithm. The algorithm was implemented to produce successful results: the accuracy of the recognition of Wake/NREM/REM stages is equal to 73%, with Cohen's kappa of 0.44 for the analyzed 19324 sleep epochs of 30 seconds each. This approach has the advantage of using the only movement and breathing signals, which can be recorded with less effort than heart or brainwave signals, and requiring only four derived parameters for the calculations. Therefore, the new system is a significant improvement for non-obtrusive sleep stage identification compared to existing approaches.


Subject(s)
Respiratory Rate , Sleep Stages , Humans , Movement , Polysomnography , Respiration , Sleep
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5518-5522, 2021 11.
Article in English | MEDLINE | ID: mdl-34892374

ABSTRACT

This paper presents a generic method to enhance performance and incorporate temporal information for cardiorespiratory-based sleep stage classification with a limited feature set and limited data. The classification algorithm relies on random forests and a feature set extracted from long-time home monitoring for sleep analysis. Employing temporal feature stacking, the system could be significantly improved in terms of Cohen's κ and accuracy. The detection performance could be improved for three classes of sleep stages (Wake, REM, Non-REM sleep), four classes (Wake, Non-REM-Light sleep, Non-REM Deep sleep, REM sleep), and five classes (Wake, N1, N2, N3/4, REM sleep) from a κ of 0.44 to 0.58, 0.33 to 0.51, and 0.28 to 0.44 respectively by stacking features before and after the epoch to be classified. Further analysis was done for the optimal length and combination method for this stacking approach. Overall, three methods and a variable duration between 30 s and 30 min have been analyzed. Overnight recordings of 36 healthy subjects from the Interdisciplinary Center for Sleep Medicine at Charité-Universitätsmedizin Berlin and Leave-One-Out-Cross-Validation on a patient-level have been used to validate the method.Clinical relevance- The method can be employed generically to feature sets for (small scale) datasets to improve classification performance for classification problems with temporal relations with random forest classifiers.


Subject(s)
Sleep Stages , Sleep , Algorithms , Healthy Volunteers , Humans , Sleep, REM
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2776-2779, 2020 07.
Article in English | MEDLINE | ID: mdl-33018582

ABSTRACT

This document presents a new complete standalone system for a recognition of sleep apnea using signals from the pressure sensors placed under the mattress. The developed hardware part of the system is tuned to filter and to amplify the signal. Its software part performs more accurate signal filtering and identification of apnea events. The overall achieved accuracy of the recognition of apnea occurrence is 91%, with the average measured recognition delay of about 15 seconds, which confirms the suitability of the proposed method for future employment. The main aim of the presented approach is the support of the healthcare system with the cost-efficient tool for recognition of sleep apnea in the home environment.


Subject(s)
Algorithms , Sleep Apnea Syndromes , Humans , Polysomnography , Recognition, Psychology , Sleep Apnea Syndromes/diagnosis
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4063-4066, 2020 07.
Article in English | MEDLINE | ID: mdl-33018891

ABSTRACT

The ballistocardiography is a technique that measures the heart rate from the mechanical vibrations of the body due to the heart movement. In this work a novel noninvasive device placed under the mattress of a bed estimates the heart rate using the ballistocardiography. Different algorithms for heart rate estimation have been developed.


Subject(s)
Ballistocardiography , Beds , Accelerometry , Heart Rate , Movement
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5712-5715, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947149

ABSTRACT

This document presents an algorithm for a non-obtrusive recognition of Sleep/Wake states using signals derived from ECG, respiration, and body movement captured while lying in a bed. As a core mathematical base of system data analytics, multinomial logistic regression techniques were chosen. Derived parameters of the three signals are used as the input for the proposed method. The overall achieved accuracy rate is 84% for Wake/Sleep stages, with Cohen's kappa value 0.46. The presented algorithm should support experts in analyzing sleep quality in more detail. The results confirm the potential of this method and disclose several ways for its improvement.


Subject(s)
Algorithms , Heart Rate , Respiration , Sleep , Humans , Movement , Sleep Stages
9.
Physiol Meas ; 39(12): 124008, 2018 12 24.
Article in English | MEDLINE | ID: mdl-30524059

ABSTRACT

OBJECTIVE: This paper presents an algorithm for non-invasive sleep stage identification using respiratory, heart rate and movement signals. The algorithm is part of a system suitable for long-term monitoring in a home environment, which should support experts analysing sleep. APPROACH: As there is a strong correlation between bio-vital signals and sleep stages, multinomial logistic regression was chosen for categorical distribution of sleep stages. Several derived parameters of three signals (respiratory, heart rate and movement) are input for the proposed method. Sleep recordings of five subjects were used for the training of a machine learning model and 30 overnight recordings collected from 30 individuals with about 27 000 epochs of 30 s intervals each were evaluated. MAIN RESULTS: The achieved rate of accuracy is 72% for Wake, NREM, REM (with Cohen's kappa value 0.67) and 58% for Wake, Light (N1 and N2), Deep (N3) and REM stages (Cohen's kappa is 0.50). Our approach has confirmed the potential of this method and disclosed several ways for its improvement. SIGNIFICANCE: The results indicate that respiratory, heart rate and movement signals can be used for sleep studies with a reasonable level of accuracy. These inputs can be obtained in a non-invasive way applying it in a home environment. The proposed system introduces a convenient approach for a long-term monitoring system which could support sleep laboratories. The algorithm which was developed allows for an easy adjustment of input parameters that depend on available signals and for this reason could also be used with various hardware systems.


Subject(s)
Heart Rate , Movement , Polysomnography , Respiratory Rate , Signal Processing, Computer-Assisted , Sleep Stages/physiology , Adult , Automation , Female , Healthy Volunteers , Humans , Male , Software , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...