Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732169

ABSTRACT

Infections may affect the course of autoimmune inflammatory diseases of the central nervous system (CNS), such as multiple sclerosis (MS). Infections with lactate dehydrogenase-elevating virus (LDV) protected mice from developing experimental autoimmune encephalomyelitis (EAE), a mouse counterpart of MS. Uninfected C57BL/6 mice immunized with the myelin oligodendrocyte glycoprotein peptide (MOG35-55) experienced paralysis and lost weight at a greater rate than mice who had previously been infected with LDV. LDV infection decreased the presentation of the MOG peptide by CD11b+CD11c+ dendritic cells (DC) to pathogenic T lymphocytes. When comparing non-infected mice to infected mice, the histopathological examination of the CNS showed more areas of demyelination and CD45+ and CD3+, but not Iba1+ cell infiltration. These results suggest that the protective effect of LDV infection against EAE development is mediated by a suppression of myelin antigen presentation by a specific DC subset to autoreactive T lymphocytes. Such a mechanism might contribute to the general suppressive effect of infections on autoimmune diseases known as the hygiene hypothesis.


Subject(s)
Dendritic Cells , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Lactate dehydrogenase-elevating virus , Mice, Inbred C57BL , Multiple Sclerosis , Myelin-Oligodendrocyte Glycoprotein , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Myelin-Oligodendrocyte Glycoprotein/immunology , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/virology , Multiple Sclerosis/pathology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/virology , Lactate dehydrogenase-elevating virus/immunology , CD11b Antigen/metabolism , CD11b Antigen/immunology , Antigen Presentation/immunology , Female , CD11c Antigen/metabolism , Cardiovirus Infections/immunology , Peptide Fragments/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
2.
Cancer Immunol Immunother ; 71(8): 1851-1862, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34973084

ABSTRACT

Transmembrane protein GARP binds latent TGF-ß1 to form GARP:(latent)TGF-ß1 complexes on the surface of several cell types including Tregs, B-cells, and platelets. Upon stimulation, these cells release active TGF-ß1. Blocking TGF-ß1 activation by Tregs with anti-GARP:TGF-ß1 mAbs overcomes resistance to PD1/PD-L1 blockade and induces immune-mediated regressions of murine tumors, indicating that Treg-derived TGF-ß1 inhibits anti-tumor immunity. TGF-ß1 exerts a vast array of effects on immune responses. For example, it favors differentiation of TH17 cells and B-cell switch to IgA production, two important processes for mucosal immunity. Here, we sought to determine whether treatment with anti-GARP:TGF-ß1 mAbs would perturb immune responses to intestinal bacterial infection. We observed no aggravation of intestinal disease, no systemic dissemination, and no alteration of innate or adaptative immune responses upon oral gavage of C. rodentium in highly susceptible Il22r-/- mice treated with anti-GARP:TGF-ß1 mAbs. To examine the effects of GARP:TGF-ß1 blockade on Ig production, we compared B cell- and TH cell- responses to OVA or CTB protein immunization in mice carrying deletions of Garp in Tregs, B cells, or platelets. No alteration of adaptive immune responses to protein immunization was observed in the absence of GARP on any of these cells. Altogether, we show that antibody-mediated blockade of GARP:TGF-ß1 or genetic deletion of Garp in Tregs, B cells or platelets, do not alter innate or adaptive immune responses to intestinal bacterial infection or protein immunization in mice. Anti-GARP:TGF-ß1 mAbs, currently tested for cancer immunotherapy, may thus restore anti-tumor immunity without severely impairing other immune defenses. PRéCIS: Immunotherapy with GARP:TGF-ß1 mAbs may restore anti-tumor immunity without impairing immune or inflammatory responses required to maintain homeostasis or host defense against infection, notably at mucosal barriers.


Subject(s)
Adaptive Immunity , Bacterial Infections , Membrane Proteins , Transforming Growth Factor beta1 , Animals , Antibodies, Monoclonal/metabolism , Bacterial Infections/immunology , Bacterial Infections/metabolism , Immunity , Immunization , Membrane Proteins/metabolism , Mice , T-Lymphocytes, Regulatory , Transforming Growth Factor beta1/metabolism
3.
Int J Mol Sci ; 22(16)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34445732

ABSTRACT

Infection with viruses, such as the lactate dehydrogenase-elevating virus (LDV), is known to trigger the onset of autoimmune anemia through the enhancement of the phagocytosis of autoantibody-opsonized erythrocytes by activated macrophages. Type I interferon receptor-deficient mice show enhanced anemia, which suggests a protective effect of these cytokines, partly through the control of type II interferon production. The development of anemia requires the expression of Fcγ receptors (FcγR) I, III, and IV. Whereas LDV infection decreases FcγR III expression, it enhances FcγR I and IV expression in wild-type animals. The LDV-associated increase in the expression of FcγR I and IV is largely reduced in type I interferon receptor-deficient mice, through both type II interferon-dependent and -independent mechanisms. Thus, the regulation of the expression of FcγR I and IV, but not III, by interferons may partly explain the exacerbating effect of LDV infection on anemia that results from the enhanced phagocytosis of IgG autoantibody-opsonized erythrocytes.


Subject(s)
Anemia, Hemolytic, Autoimmune/immunology , Arterivirus Infections/immunology , Interferons/metabolism , Lactate dehydrogenase-elevating virus/immunology , Receptors, IgG/metabolism , Anemia, Hemolytic, Autoimmune/virology , Animals , Arterivirus Infections/virology , Host-Pathogen Interactions , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis
4.
Eur J Immunol ; 51(6): 1482-1493, 2021 06.
Article in English | MEDLINE | ID: mdl-33788263

ABSTRACT

The dimeric cytokine IL-12 is important in the control of various infections but also contributes to the pathology of certain diseases making it a potential target for therapy. However, its specific inhibition with antibodies is complicated by the fact that its two subunits are present in other cytokines: p40 in IL-23 and p35 in IL-35. This has led to erroneous conclusions like the alleged implication of IL-12 in experimental autoimmune encephalomyelitis (EAE). Here, we report the development of a mouse anti-mouse IL-12 vaccine and the production of monoclonal antibodies (mAbs) that do not react with p40 or p35 (in IL-35) but specifically recognize and functionally inhibit the IL-12 heterodimer. Using one of these mAbs, MM12A1.6, that strongly inhibited IFN-γ production and LPS-induced septic shock after viral infection, we demonstrate the critical role played by IL-12 in the rejection of male skin graft by female C57BL/6 syngeneic recipients and in the clearance of an immunogenic mastocytoma tumor variant by DBA/2 mice, but not in a parent to F1 immune aggression model nor in MOG-induced EAE, which was clearly prevented by anti-p40 mAb C17.8. Given this selective inhibition of IL-12, these mAbs provide new options for reassessing IL-12 function in vivo.


Subject(s)
Antibodies, Monoclonal/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Graft Rejection/immunology , Interleukin-12/metabolism , Mastocytoma/immunology , Multiple Sclerosis/immunology , Nidovirales Infections/immunology , Nidovirales/physiology , Protein Subunits/metabolism , Sepsis/immunology , Skin Transplantation , Animals , Antibodies, Monoclonal/isolation & purification , Disease Models, Animal , Epitopes , Humans , Hybridomas , Interleukin-12/immunology , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Neoplasms, Experimental , Protein Subunits/immunology
5.
Nat Commun ; 11(1): 4545, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32917858

ABSTRACT

TGF-ß1, ß2 and ß3 bind a common receptor to exert vastly diverse effects in cancer, supporting either tumor progression by favoring metastases and inhibiting anti-tumor immunity, or tumor suppression by inhibiting malignant cell proliferation. Global TGF-ß inhibition thus bears the risk of undesired tumor-promoting effects. We show that selective blockade of TGF-ß1 production by Tregs with antibodies against GARP:TGF-ß1 complexes induces regressions of mouse tumors otherwise resistant to anti-PD-1 immunotherapy. Effects of combined GARP:TGF-ß1/PD-1 blockade are immune-mediated, do not require FcγR-dependent functions and increase effector functions of anti-tumor CD8+ T cells without augmenting immune cell infiltration or depleting Tregs within tumors. We find GARP-expressing Tregs and evidence that they produce TGF-ß1 in one third of human melanoma metastases. Our results suggest that anti-GARP:TGF-ß1 mAbs, by selectively blocking a single TGF-ß isoform emanating from a restricted cellular source exerting tumor-promoting activity, may overcome resistance to PD-1/PD-L1 blockade in patients with cancer.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Drug Resistance, Neoplasm/drug effects , Membrane Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Transforming Growth Factor beta1/antagonists & inhibitors , Animals , Antineoplastic Agents, Immunological/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor/transplantation , Cell Proliferation/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm/immunology , HEK293 Cells , Humans , Membrane Proteins/metabolism , Mice , Neoplasms/immunology , Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta1/metabolism
6.
Haematologica ; 104(2): 392-402, 2019 02.
Article in English | MEDLINE | ID: mdl-30213828

ABSTRACT

In spite of considerable therapeutic progress, acute graft-versus-host disease still limits allogeneic hematopoietic cell transplantation. We recently reported that mouse infection with nidovirus lactate dehydrogenase elevating virus impairs disease in non-conditioned B6D2F1 recipients of parental B6 spleen cells. As this virus activates TLR7, we tested a pharmacological TLR7 ligand, R848, in this model and observed complete survival if donor and recipients were treated before transplantation. Mixed lymphocyte culture performed 48 h after R848-treatment of normal mice demonstrated that both T-cell allo-responsiveness and antigen presentation by CD11b+ and CD8α+ dendritic cells were inhibited. These inhibitions were dependent on IFNAR-1 signaling. In the B6 to B6D2F1 transplantation model, R848 decelerated, but did not abrogate, donor T-cell implantation and activation. However, it decreased interferon-gamma, tumor necrosis factor-alpha and interleukin-27 while upregulating active transforming growth factor-beta 1 plasma levels. In addition, donor and recipient Foxp3+ regulatory T-cell numbers were increased in recipient mice and their elimination compromised disease prevention. R848 also strongly improved survival of lethally irradiated BALB/c recipients of B6 hematopoietic cells and this also correlated with an upregulation of CD4 and CD8 Foxp3+ regulatory T cells that could be further increased by inhibition of interleukin-27. The combination of anti-interleukin-27p28 mono -clonal antibody and R848 showed strong synergy in preventing disease in the B6 to B6D2F1 transplantation model when recipients were sublethally irradiated and this also correlated with upregulation of regulatory T cells. We conclude that R848 modulates multiple aspects of graft-versus-host disease and offers potential for safe allogeneic bone marrow transplantation that can be further optimized by inhibition of interleukin-27.


Subject(s)
Antibodies, Monoclonal/pharmacology , Graft vs Host Disease/prevention & control , Imidazoles/pharmacology , Interleukin-27/antagonists & inhibitors , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Toll-Like Receptor 7/metabolism , Animals , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Graft vs Host Disease/etiology , Graft vs Host Disease/mortality , Immunomodulation/drug effects , Ligands , Melanoma, Experimental , Mice , Neoplasm Transplantation , T-Lymphocytes, Regulatory/immunology
7.
Eur J Immunol ; 48(11): 1883-1891, 2018 11.
Article in English | MEDLINE | ID: mdl-30216414

ABSTRACT

The pathogenic role of IL-17 and GM-CSF has been unravelled in experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). However, in most models, EAE is characterised by a monophasic attack which is not representative of the relapsing nature nor the chronicity displayed in MS. Here, we used proteolipid protein peptide (PLP139-151 ) to trigger EAE-relapses (EAE-II) in SJL mice that had recovered from a primary-EAE episode (EAE-I). This procedure resulted in severe and irreversible disease that, unlike EAE-I, was not abolished by anti-IL-17-mAb. In contrast, prophylactic anti-GM-CSF-mAb treatment prevented EAE-I and -II. Strikingly, the expression of T-cell transcription factors and cytokines/chemokines in mice treated with anti-GM-CSF during both EAE episodes was silenced. Anti-GM-CSF-mAb treatment administered only during EAE-II did not completely prevent relapses but mice ultimately reached full recovery. Anti-GM-CSF treatment also strongly impaired and ultimately resolved monophasic MOG35-55 -induced EAE in C57Bl/6 mice. In such protected mice, anti-GM-CSF treatment also prevented a further relapse induced by MOG-revaccination. These results underscore the critical role of GM-CSF on pro-inflammatory mediator production. Furthermore, we observed a strong preventive and curative effect of anti-GM-CSF neutralisation in two EAE models, relapsing and chronic. Altogether these findings are relevant for further MS research.


Subject(s)
Antibodies, Monoclonal/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-17/metabolism , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Animals , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Mice , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein/metabolism , Recurrence , Transcription Factors/metabolism
8.
Immun Inflamm Dis ; 5(2): 200-213, 2017 06.
Article in English | MEDLINE | ID: mdl-28474504

ABSTRACT

INTRODUCTION: Viruses have developed multiple mechanisms to alter immune reactions. In 1969, it was reported that lactate dehydrogenase-elevating virus (LDV), a single stranded positive sense mouse nidovirus, delays skin allograft rejection and inhibits spleen alterations in graft versus host disease (GVHD). As the underlying mechanisms have remained unresolved and given the need for new therapies of this disease, we reassessed the effects of the virus on GVHD and tried to uncover its mode of action. METHODS: GVHD was induced by transfer of parent (B6) spleen cells to non-infected or LDV-infected B6D2F1 recipients. In vitro mixed-lymhocyte culture (MLC) reactions were used to test the effects of the virus on antigen-presenting cells (APC) and responder T cells. RESULTS: LDV infection resulted in a threefold increase in survival rate with reduced weight loss and liver inflammation but with the establishment of permanent chimerism that correlated with decreased interleukine (IL)-27 and interferon (IFN)γ plasma levels. Infected mice showed a transient elimination of splenic CD11b+ and CD8α+ conventional dendritic cells (cDCs) required for allogeneic CD4 and CD8 T cell responses in vitro. This drop of APC numbers was not observed with APCs derived from toll-like receptor (TLR)7-deficient mice. A second effect of the virus was a decreased T cell proliferation and IFNγ production during MLC without detectable changes in Foxp3+ regulatory T cell (Tregs) numbers. Both cDC and responder T cell inhibition were type I IFN dependent. Although the suppressive effects were very transient, the GVHD inhibition was long-lasting. CONCLUSION: A type I IFN-dependent suppression of DC and T cells just after donor spleen cell transplantation induces permanent chimerism and donor cell implantation in a parent to F1 spleen cell transplantation model. If this procedure can be extended to full allogeneic bone marrow transplantation, it could open new therapeutic perspectives for hematopoietic stem cell transplantation (HSCT).


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Graft vs Host Disease/immunology , Interferon Type I/immunology , Nidovirales Infections/immunology , Nidovirales/immunology , Allografts , Animals , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , Dendritic Cells/pathology , Graft vs Host Disease/genetics , Graft vs Host Disease/pathology , Interferon Type I/genetics , Mice , Mice, Knockout
9.
Blood ; 128(16): 2068-2082, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27488350

ABSTRACT

Reestablishment of competent regulatory pathways has emerged as a strategy to reduce the severity of graft-versus-host disease (GVHD), and recalibrate the effector and regulatory arms of the immune system. However, clinically feasible, cost-effective strategies that do not require extensive ex vivo cellular manipulation have remained elusive. In the current study, we demonstrate that inhibition of the interleukin-27p28 (IL-27p28) signaling pathway through antibody blockade or genetic ablation prevented lethal GVHD in multiple murine transplant models. Moreover, protection from GVHD was attributable to augmented global reconstitution of CD4+ natural regulatory T cells (nTregs), CD4+ induced Tregs (iTregs), and CD8+ iTregs, and was more potent than temporally concordant blockade of IL-6 signaling. Inhibition of IL-27p28 also enhanced the suppressive capacity of adoptively transferred CD4+ nTregs by increasing the stability of Foxp3 expression. Notably, blockade of IL-27p28 signaling reduced T-cell-derived-IL-10 production in conventional T cells; however, there was no corresponding effect in CD4+ or CD8+ Tregs, indicating that IL-27 inhibition had differential effects on IL-10 production and preserved a mechanistic pathway by which Tregs are known to suppress GVHD. Targeting of IL-27 therefore represents a novel strategy for the in vivo expansion of Tregs and subsequent prevention of GVHD without the requirement for ex vivo cellular manipulation, and provides additional support for the critical proinflammatory role that members of the IL-6 and IL-12 cytokine families play in GVHD biology.


Subject(s)
Forkhead Transcription Factors/immunology , Gene Expression Regulation/immunology , Graft vs Host Disease/prevention & control , Interleukins/antagonists & inhibitors , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Disease Models, Animal , Forkhead Transcription Factors/genetics , Graft vs Host Disease/genetics , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-12/genetics , Interleukin-12/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Interleukins/genetics , Interleukins/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Signal Transduction/genetics , T-Lymphocytes, Regulatory/pathology
10.
J Neuroinflammation ; 12: 207, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26559484

ABSTRACT

BACKGROUND: Microbial infections have been implicated in initiating and enhancing severity of autoimmune diseases including the demyelinating disease multiple sclerosis (MS). Nevertheless, the incidence of both acute and persisting viral infections without evidence of autoimmune sequelae suggests that this process is well controlled. The conditions promoting or stemming self-reactive (SR) T cells following viral-induced tissue damage thus need to be better defined. Using a non-fatal viral mouse model of encephalomyelitis associated with demyelination and disability, yet ultimate clinical improvement, this study set out to monitor uptake and presentation of endogenous myelin antigens, as well as induction and fate of SR T cells. METHODS: Activation and central nervous system (CNS) recruitment of myelin-specific CD4 T cells was analyzed by flow cytometry during encephalomyelitis induced by a glia tropic murine coronavirus. Potential antigen-presenting cells (APC) ingesting myelin were characterized by flow cytometry and their ability to activate SR T cells tested by co-culture with carboxyfluorescein succinimidyl ester (CFSE)-labeled myelin-specific CD4 T cells. Endogenous SR T cell kinetics was analyzed within both cervical lymph nodes and CNS by Enzyme-Linked ImmunoSpot (ELISPOT) following viral infection. RESULTS: The data demonstrate the presence of APC capable of activating SR T cells in both draining lymph nodes and the CNS temporally correlating with overt demyelination. While both the CNS-infiltrating myeloid population and microglia ingested myelin, only CNS-infiltrating APC were capable of presenting endogenous myelin antigen to SR T cells ex vivo. Finally, SR T cell activation from the endogenous T cell repertoire was most notable when infectious virus was controlled and paralleled myelin damage. Although SR T cell accumulation peaked in the persistently infected CNS during maximal demyelination, they were not preferentially retained. Their gradual decline, despite ongoing demyelination, suggested minimal re-stimulation and pathogenic function in vivo consistent with the lack of autoimmune symptoms. CONCLUSIONS: The results demonstrate the potential for CNS tissue destruction to induce and recruit SR T cells to the injury site and support a host suppressive mechanism limiting development of autoimmunity.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Demyelinating Diseases/immunology , Animals , Antigen-Presenting Cells/immunology , CD11b Antigen/immunology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Demyelinating Diseases/virology , Immunotherapy, Adoptive , Lymph Nodes/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Monocytes/immunology , Myelin Sheath/pathology , Recovery of Function
SELECTION OF CITATIONS
SEARCH DETAIL
...