Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 55(11-12): 3209-3223, 2022 06.
Article in English | MEDLINE | ID: mdl-33185294

ABSTRACT

Attentional processes allow the brain to overcome its processing capacities limitations by enhancing relevant visual information and suppressing irrelevant information. Thus attention plays a critical role, shaping our perception of the world. Several models have been proposed to describe the neuronal bases of attention and its mechanistic underlyings. Recent electrophysiological evidence show that attentional processes rely on oscillatory brain activities that correlate with rhythmic changes in cognitive performance. In the present review, we first take a historical perspective on how attention is viewed, from the initial spotlight theory of attention to the recent dynamic view of attention selection and we review their supporting psychophysical evidence. Based on recent prefrontal electrophysiological evidence, we refine the most recent models of attention sampling by proposing a rhythmic and continuous model of attentional sampling. In particular, we show that attention involves a continuous exploration of space, shifting within and across visual hemifield at specific alpha and theta rhythms, independently of the current attentional load. In addition, we show that this prefrontal attentional spotlight implements conjointly selection and suppression mechanisms, and is captured by salient incoming items. Last, we argue that this attention spotlight implements a highly flexible alternation of attentional exploration and exploitation epochs, depending on ongoing task contingencies. In a last part, we review the local and network oscillatory mechanisms that correlate with rhythmic attentional sampling, describing multiple rhythmic generators and complex network interactions.


Subject(s)
Brain , Visual Perception , Brain/physiology , Neurons , Photic Stimulation , Theta Rhythm/physiology , Visual Perception/physiology
2.
Nat Commun ; 11(1): 925, 2020 02 17.
Article in English | MEDLINE | ID: mdl-32066740

ABSTRACT

Recent studies suggest that attention samples space rhythmically through oscillatory interactions in the frontoparietal network. How these attentional fluctuations coincide with spatial exploration/displacement and exploitation/selection by a dynamic attentional spotlight under top-down control is unclear. Here, we show a direct contribution of prefrontal attention selection mechanisms to a continuous space exploration. Specifically, we provide a direct high spatio-temporal resolution prefrontal population decoding of the covert attentional spotlight. We show that it continuously explores space at a 7-12 Hz rhythm. Sensory encoding and behavioral reports are increased at a specific optimal phase w/ to this rhythm. We propose that this prefrontal neuronal rhythm reflects an alpha-clocked sampling of the visual environment in the absence of eye movements. These attentional explorations are highly flexible, how they spatially unfold depending both on within-trial and across-task contingencies. These results are discussed in the context of exploration-exploitation strategies and prefrontal top-down attentional control.


Subject(s)
Attention/physiology , Models, Neurological , Prefrontal Cortex/physiology , Saccades/physiology , Space Perception/physiology , Alpha Rhythm/physiology , Animals , Behavior Observation Techniques , Behavior, Animal/physiology , Cues , Haplorhini , Markov Chains , Photic Stimulation , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...